Компьютерный журнал для новичков и профессионалов

Пзс матрица в локации. Матрица с обратной засветкой. Перемещение зарядов в ПЗС-матрице

Впервые принцип ПЗС с идеей сохранять и затем считывать электронные заряды был разработан двумя инженерами корпорации BELL в конце 60-х годов в ходе поиска новых типов памяти для ЭВМ, способных заменить память на ферритовых кольцах (да – да, была и такая память). Эта идея оказалась бесперспективной, но способность кремния реагировать на видимый спектр излучения была замечена и мысль использовать этот принцип для обработки изображений получила своё развитие.

Начнем с расшифровки термина.

Аббревиатура ПЗС означает "Приборы с Зарядовой Связью" - этот термин образовался от английского "Сharge-Сoupled Devices" (CCD).

Данный тип приборов в настоящее время имеет очень широкий круг применений в самых различных оптоэлектронных устройствах для регистрации изображения. В быту это цифровые фотоаппараты, видеокамеры, различные сканеры.

Что же отличает ПЗС-приемник от обычного полупроводникового фотодиода, имеющего светочувствительную площадку и два электрических контакта для съема электрического сигнала?

Во-первых , таких светочувствительных площадок (часто их называют пикселами - элементами, принимающими свет и преобразующими его в электрические заряды) в ПЗС-приемнике очень много, от нескольких тысяч до нескольких сотен тысяч и даже нескольких миллионов. Размеры отдельных пикселов одинаковы и могут быть от единиц до десятков микрон. Пиксели могут быть выстроены в один ряд - тогда приемник называется ПЗС-линейкой, или ровными рядами заполнять участок поверхности - тогда приемник называют ПЗС-матрицей.

Раcположение светоприемных элементов (прямоугольники синего цвета) в ПЗС-линейке и ПЗС-матрице.

Во-вторых , в ПЗС-приёмнике, внешне похожем на обычную микросхему, нет огромного числа электрических контактов для вывода электрических сигналов, которые, казалось бы, должны идти от каждого светоприемного элемента. Зато к ПЗС-приемнику подключается электронная схема, которая позволяет извлекать с каждого светочувствительного элемента электрический сигнал, пропорциональный его засветке.

Действие ПЗС можно описать следующим образом: каждый светочувствительный элемент - пиксель - работает как копилка для электронов. Электроны возникают в пикселях под действием света, пришедшего от источника. В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света, как ведро, выставленное на улицу во время дождя. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются. Все это возможно за счет определенной структуры кристалла, где размещаются светочувствительные элементы, и электрической схемы управления.

Практически точно так же работает и ПЗС-матрица. После экспонирования (засветки проецируемым изображением) электронная схема управления прибором подаёт на него сложный набор импульсных напряжений, которые начинают сдвигать столбцы с накопленными в пикселях электронами к краю матрицы, где находится аналогичный измерительный ПЗС-регистр, заряды в котором сдвигаются уже в перпендикулярном направлении и попадают на измерительный элемент, создавая в нем сигналы, пропорциональные отдельным зарядам. Таким образом, для каждого последующего момента времени мы можем получить значение накопленного заряда и сообразить, какому пикселю на матрице (номер строки и номер столбца) он соответствует.

Кратко о физике процесса.

Для начала отметим, что ПЗС относятся к изделиям так называемой функциональной электроники, Их нельзя представить как совокупность отдельных радиоэлементов - транзисторов, сопротивлений и конденсаторов. В основе работы лежит принцип зарядовой связи. Принцип зарядовой связи использует два известных из электростатики положения:

  1. одноимённые заряды отталкиваются,
  2. заряды стремятся расположиться там, где их потенциальная энергия минимальна. Т.е. грубо – «рыба ищет там, где глубже».

Для начала представим себе МОП-конденсатор (МОП - сокращение от слов металл-окисел- полупроводник). Это то, что остаётся от МОП-транзистора, если убрать из него сток и исток, то есть просто электрод, отделённый от кремния слоем диэлектрика. Для определённости будем считать, что полупроводник - p-типа, т. е. концентрация дырок в равновесных условиях много (на несколько порядков) больше, чем электронов. В электрофизике «дыркой» называют заряд, обратный заряду электрона, т.е. положительный заряд.

Что будет, если на такой электрод (его называют затвором) подать положительный потенциал? Электрическое поле, создаваемое затвором, проникая в кремний сквозь диэлектрик, отталкивает подвижные дырки; возникает обеднённая область - некоторый объём кремния, свободный от основных носителей. При параметрах полупроводниковых подложек, типичных для ПЗС, глубина этой области составляет около 5 мкм. Напротив, электроны, возникшие здесь под действием света, притянутся к затвору и будут накапливаться на границе раздела окисел-кремний непосредственно под затвором, т. е. сваливаются в потенциальную яму (рис. 1).


Рис. 1
Образование потенциальной ямы при приложении напряжения к затвору

При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и в конце концов могут полностью его скомпенсировать, так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние - за тем исключением, что на границе раздела образуется тонкий слой электронов.

Пусть теперь рядом с затвором расположен ещё один затвор, и на него тоже подан положительный потенциал, причём больший, чем на первый (рис. 2). Если только затворы расположены достаточно близко, их потенциальные ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если она «глубже».
Рис. 2
Перекрытие потенциальных ям двух близко расположенных затворов. Заряд перетекает в то место, где потенциальная яма глубже.

Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры. Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. (Термин шина в электронике - проводник электрического тока, соединящиий однотипные элементы, тактовая шина - проводники по которым передается смещенное по фазе напряжение.) Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3).


Рис. 3
Простейший трёхфазный ПЗС-регистр.
Заряд в каждой потенциальной яме разный.

Это и есть простейший трёхфазный регистр сдвига на ПЗС. Тактовые диаграммы работы такого регистра показаны на рис. 4.




Рис. 4
Тактовые диаграммы управления трёхфазным регистром -- это три меандра, сдвинутые на 120 градусов.
При смене потенциалов происходит передвижение зарядов.

Видно, что для его нормальной работы в каждый момент времени, по крайней мере, на одной тактовой шине должен присутствовать высокий потенциал, и, по крайней мере, на одной - низкий потенциал (потенциал барьера). При повышении потенциала на одной шине и понижении его на другой (предыдущей) происходит одновременная передача всех зарядовых пакетов под соседние затворы, и за полный цикл (один такт на каждой фазной шине) происходит передача (сдвиг) зарядовых пакетов на один элемент регистра.

Для локализации зарядовых пакетов в поперечном направлении формируются так называемые стоп-каналы - узкие полоски с повышенной концентрацией основной легирующей примеси, идущие вдоль канала переноса (рис. 5).


Рис. 5.
Вид на регистр "сверху".
Канал переноса в боковом направлении ограничивается стоп-каналами.

Дело в том, что от концентрации легирующей примеси зависит, при каком конкретно напряжении на затворе под ним образуется обеднённая область (этот параметр есть не что иное, как пороговое напряжение МОП-структуры). Из интуитивных соображений понятно, что чем больше концентрация примеси, т. е. чем больше дырок в полупроводнике, тем труднее их отогнать вглубь, т. е. тем выше пороговое напряжение или же, при одном напряжении, тем ниже потенциал в потенциальной яме.

Проблемы

Если при производстве цифровых приборов разброс параметров по пластине может достигать нескольких крат без заметного влияния на параметры получаемых приборов (поскольку работа идёт с дискретными уровнями напряжения), то в ПЗС изменение, скажем, концентрации легирующей примеси на 10% уже заметно на изображении. Свои проблемы добавляет и размер кристалла, и невозможность резервирования, как в БИС памяти, так что дефектные участки приводят к негодности всего кристалла.

Итог

Разные пикселы ПЗС матрицы технологически имеют разную чувствительность к свету и эту разницу необходимо корректировать.

В цифровых КМА эта коррекция называется системой Auto Gain Control (AGC)

Как работает система AGC

Для простоты рассмотрения не будем брать что-то конкретное. Предположим, что на выходе АЦП узла ПЗС есть некие потенциальные уровни. Предположим, что 60 - средний уровень белого.



  1. Для каждого пикселя линейки ПЗС считывается значение при освещении его эталонным белым светом (а в более серьезных аппаратах – и считывание «уровня черного»).
  2. Значение сравнивается с опорным уровнем (например, средним).
  3. Разница между выходным значением и опорным уровнем запоминается для каждого пиксела.
  4. В дальнейшем, при сканировании эта разница компенсируется для каждого пиксела.

Инициализация системы AGC производится каждый раз при инициализации системы сканера. Наверное, вы замечали, что при включении машины через какое-то время каретка сканера начинает совершать поступательно-возвратные движения (елозить у ч/б полоски). Это и есть процесс инициализации системы AGC. Система так же учитывает и состояние лампы (старение).

Так же Вы наверняка обращали внимание, что малые МФУ, снабженные цветным сканером, «зажигают лампу» тремя цветами по очереди: красным, синим и зеленым. Затем только подсветка оригинала зажигается белым. Это сделано для лучшей коррекции чувствительности матрицы раздельно по каналам RGB.

Тест полутонов (SHADING TEST) позволяет инициировать эту процедуру по желанию инженера и привести значения корректировки к реальным условиям.

Попробуем рассмотреть все это на реальной, «боевой» машине. За основу возьмем широкоизвестный и популярный аппарат SAMSUNG SCX-4521 (Xerox Pe 220).

Необходимо отметить, что в нашем случае CCD становится CIS (Contact Image Sensor), но суть происходящего в корне от этого не меняется. Просто в качестве источника света используются линейки светодиодов.

Итак:

Сигнал изображения от CIS имеет уровень около 1,2 В и поступает на АЦП-секцию (САЦП) контроллера аппарата (САЦП). После САЦП аналоговый сигнал CIS будет преобразован в 8-битовый цифровой сигнал.

Процессор обработки изображения в САЦП прежде всего использует функцию коррекции тона, а затем функцию гамма-коррекции. После этого данные подаются на различные модули в соответствии с режимом работы. В режиме Text данные изображения поступают на модуль LAT, в режиме Photo данные изображения поступают на модуль "Error Diffusion", в режиме PC-Scan данные изображения поступают прямо на персональный компьютер через доступ DMA.

Перед осуществлением тестирования положите на стекло экспонирования несколько чистых листов белой бумаги. Само собой разумеется, что оптика, ч/б полоса и вообще узел сканера изнутри должны быть предварительно «вылизаны»

  1. Выберите в TECH MODE
  2. Нажмите кнопку ENTER (Ввод) для сканирования изображения.
  3. После сканирования будет распечатан "CIS SHADING PROFILE" (профиль полутонов CIS). Пример такого листа приведен ниже. Не обязательно, что он должен быть копией Вашего результата, но близок по изображению.
  4. Если распечатанное изображение сильно отличается от изображения, показанного на рисунке, значит CIS неисправен. Обратите внимание – внизу листа отчета написано “Results: OK”. Это означает, что система серьезных претензий к модулю CIS не имеет. В противном случае будут даны результаты ошибок.

Пример распечатки профиля:

Удачи Вам!!

За основу взяты материалы статей и лекций преподавателей СПбГУ (ЛГУ), СПбЭТУ (ЛЭТИ) и Axl. Спасибо им.

Материал подготовлен В. Шеленбергом

В процессе эволюции разрешение цифровых фотокамер увеличилось в несколько раз. Поэтому большое количество производителей ЭОП, изделия которых использовались в ранних моделях фотоаппаратов, в итоге сильно сократилось. Кроме увеличения азрешения на процесс «естественного отбора» влияли и другие причины. Помимо уже рассмотренных характеристик (динамический диапазон, соотношение сигнал/шум и т. д.), для проектировщиков камеры важны также уровень энергопотребления ЭОП и совместимость с существующей элементной базой, а для производителя сенсора - процент брака и себестоимость устройств.

На рубеже тысячелетия можно было выделить двух крупнейших производителей ПЗС-матриц для профессиональной и студийной техники - Eastman Kodak в США и Philips в Европе.

Заслугой разработчиков Kodak является внедрение бокового антиблюмингового дренажа в полнокадровых матрицах, позволившего значительно увеличить динамический диапазон ЭОП по сравнению с сенсорами, в которых был применен вертикальный дренаж. В матрицах, изготовленных по технологии BluePlus, электрод, расположенный над светочувствительной областью пиксела, изготавливался на основе оксида индия и диоксида олова. За счет этого значительно повышался коэффициент пропускания электрода, в итоге резко выросла чувствительность сенсора, особенно в традиционно «трудных» для ЭОП «синей» и «фиолетовой» областях спектра.

Всю продукцию Kodak можно разделить на три большие категории:

  • ПЗС-матрицы для студийной и профессиональной техники;
  • ПЗС-линейки для студийных сканирующих приставок к крупноформатным фотоаппаратам;
  • ПЗС-матрицы и КМОП-сенсоры для любительских фотокамер.

Сенсоры для любительских моделей используются, за редким исключением, только в фотоаппаратах Kodak. Зато матрицы, предназначенные для студийных камер, применяются практически всеми производителями этой категории. Последняя разработка фирмы - сенсор с разрешением 22 мегапиксела.

Голландским концерном Philips была сделана попытка минимизировать себестоимость ПЗС-матриц с помощью оригинальной технологии Building Block. При обычном производстве ПЗС-матрица высокого разрешения изготавливается единым блоком и при браке потери велики. Кроме того, максимальный размер ЭОП ограничивается возможностями оборудования. В противоположность этому, методика Building Block (буквально - кирпичи), разработанная Philips, основана на использовании «кирпичиков», состоящих из модулей размером 1000x1000 пикселов. Объединяя данные «кирпичики», можно построить сенсор практически неограниченного разрешения. При этом в случае обнаружения дефекта в одном из модулей его можно легко заменить. Таким образом, себестоимость изделия значительно ниже.

Наибольшей популярностью пользовалась шестимегапиксель-ная матрица FTF 3020 (36x24 мм), применявшаяся в большинстве моделей студийных камер. Из новых сенсоров перспективным считается 11-мегапиксельный ЭОП, тоже созданный по технологии Building Block. Его мегапиксельные «кирпичики» по габаритам меньше прежних модулей, поэтому размеры новой матрицы такие же, как и у шестимегапиксельной модели. Благодаря этому студийные фотоаппараты, использовавшие FTF 3020, легко могут быть оборудованы новым сенсором.

Как было замечено выше, основной особенностью матриц Fuji-Film являются нестандартная форма и расположение элементов, в то же время реальных плюсов данные решения не продемонстрировали. В результате матрицы этой фирмы применяются только в фотоаппаратах FujiFilm, хотя ассортимент сенсоров довольно широк и включает в себя разработки для профессиональной техники.

Корпорация Sony с самого начала ориентировалась исключительно на рынок массовой техники. При этом разработчикам данной фирмы удалось внедрить ряд решений, благодаря которым качество кадров значительно улучшилось.

Одной из основных инноваций была технология HAD - Hole-Accumulation Diode. В матрицах HAD носителями информации о заряде пиксела были не электроны, а так называемые «дырки». При этом отпадала необходимость в полисиликоновом электроде над светочувствительной частью пиксела и значительно увеличивалась чувствительность сенсора, особенно в коротковолновой части спектра. Кроме того, размещение поглощающего «дырки» слоя у поверхности матрицы уменьшало тепловой шум.

При максимально открытой диафрагме растет процент лучей, падающих на поверхность матрицы под большими углами. После прохождения через микролинзы обычной конструкции эти лучи, как правило, не попадали на светочувствительный элемент. Чтобы уловить максимальное количество света, попадающего на микролинзу, разработчики Sony в матрице New Structure CCD использовали дополнительный оптический элемент. Расположенная непосредственно над светочувствительным элементом внутренняя линза корректировала лучи, входящие под большими углами.

Ассортимент ПЗС-матриц Sony очень велик, причем с увеличением разрешения размер и интерфейсные разъемы сенсора не изменяются, что позволяет при разработке нового фотоаппарата использовать прежнюю оптику и корпус.

С появлением в модельном ряде матрицы ICX413 Sony заняла соответствующую нишу на рынке профессиональных камер. При диагонали 28,4 мм размеры, сенсора (23,4x15,6 мм) соответствуют кадру пленки формата APS, поэтому он идеально подходит для использования в моделях, создаваемых на базе пленочных «зеркалок». В результате эту шестимегапиксель-ную матрицу выбрал Nikon для своей профессиональной модели D-100.

Значительных успехов в разработке КМОП-матриц для профессиональных камер добился концерн Canon. Размер сенсора был увеличен до габаритов кадра APS, в результате возросло отношение светочувствительной части пиксела к «обвязке» и, как следствие, значительно поднялась чувствительность.

Кроме того, в состав компонентов каждого пиксела был включен своеобразный «фильтр», который замерял уровень электронного шума, генерируемого «обвязкой» в нерабочем состоянии. При съемке «фильтр» каждого элемента автоматически «вычитал» этот шум из сигнала, в результате влияние неравномерно распределенных по матрице электронных помех удалось снизить.

Лидирующие позиции в области разработки КМОП-матриц занимает белый искал фирма Fill Factory. Она была основана в 1999 году, но разработками КМОП-матриц занималась еще с 1987 года, будучи подразделением ШЕС, Европейского независимого центра микроэлектронных технологий. В итоге в стенах FillFactory появился ряд интересных и эффективных решений, улучшивших показатели КМОП-сенсоров.

В первую очередь удалось значительно увеличить светочувствительную область пиксела. В обычных КМОП-матрицах фотоны «выбивают» электроны на всей поверхности пиксела. Только вот эти «фотоэлектроны» (термин ненаучный, но иногда в оптоэлек-тронике применяемый) притягиваются либо «обвязкой» (расположенной, кстати, на поверхности матрицы), либо подложкой сенсора. Поэтому «фотоэлектроны», генерируемые поверхностью вокруг фотоэлемента (а это более 70 % всей площади пиксела), в процессе создания заряда никоим образом не участвуют.

Специалисты FillFactory предложили простое и гениальное решение. Благодаря генерируемому электростатическому барьеру «фотоэлектроны», генерируемые под «обвязкой», не поглощаются ни «обвязкой», ни подложкой, а «всасываются» потенциальной ямой фотоэлемента. Процесс «всасывания» не столь уж и длителен (от 10 до 50 наносекунд), поэтому тепловой шум (обычно заметен при «длинных» выдержках на всех типах сенсоров) практически отсутствует. А вот чувствительность сенсора возрастает в несколько раз, при этом нет необходимости использовать матрицы больших габаритов. Следовательно, данная технология может быть использована и в любительской технике.

Динамический диапазон КМОП-сенсора можно расширить, используя еще одну из наработок FillFactory - нелинейный режим накопления заряда. В этом режиме в «обвязку» пиксела добавлены элементы, которые при достижении определенного уровня заряда в потенциальной яме переключают пиксел в состояние «насыщения». В этом состоянии «фотоэлектроны» накапливаются в потенциальной яме менее интенсивно, уменьшая риск ее переполнения.

Благодаря данной методике происходит адаптивное сжатие динамического диапазона кадра - светлые участки не выглядят «засвеченными», а темные - «недодержанными». Кроме того, не нужна большая разрядность АЦП, сокращается также размер кадров.

Разработанные FillFactory КМОП-сенсоры нашли свое применение как в студийных (Leaf C-Most, Leaf Valeo), так и в профессиональных (Kodak DCS Pro 14n) фотоаппаратах. Возможно, что в недалеком будущем КМОП-матрицы этой фирмы будут использоваться и в любительской технике.

Общие сведения о ПЗС матрицах .

В настоящее время в качестве светочувствительного устройства в большинстве систем ввода изображений используются ПЗС (прибор с зарядовой связью, английский эквивалент CCD) матрицы.

Принцип работы ПЗС матрицы следующий: на основе кремния создается матрица светочувствительных элементов (секция накопления). Каждый светочувствительный элемент имеет свойство накапливать заряды, пропорционально числу попавших на него фотонов. Таким образом за некоторое время (время экспозиции) на секции накопления получается двумерная матрица зарядов, пропорциональных яркости исходного изображения. Накопленные заряды первоначально переносятся в секцию хранения, а далее строка за строкой и пиксел за пикселом на выход матрицы.

Размер секции хранения по отношению к секции накопления бывает разный:

  • на кадр (матрицы с кадровым переносом для прогрессивной развертки);
  • на полукадр (матрицы с кадровым переносом для черезстрочной развертки);

Существуют также матрицы, в которых отсутствует секция хранения, и тогда строчный перенос осуществляется прямо по секции накопления. Очевидно, что для работы таких матриц требуется оптический затвор.

Качество современных ПЗС матриц таково, что в процессе переноса заряд практически не изменяется.

Не смотря на видимое разнообразие телевизионных камер, ПЗС матрицы, используемые в них, практически одни и теже, поскольку массовое и крупносерийное производство ПЗС матриц осуществляется всего несколькими фирмами. Это SONY, Panasonic, Samsung, Philips, Hitachi Kodak.

Основными параметрами, ПЗС матриц являются:

  • размерность в пикселях;
  • физический размер в дюймах (2/3, 1/2, 1/3 и т.д.). При этом сами цифры не определяют точный размер чувствительной области, а, скорее, определяют класс прибора;
  • чувствительность.

Разрешающая способность ПЗС камер .

Разрешающая способность ПЗС камер в основном определяется размерностью ПЗС матрицы в пикселях и качеством обьектива. В какой-то степени на это может влиять электроника камеры (если она плохо сделана это может ухудшить разрешение, но откровенно плохо сейчас делают редко).

Здесь важно сделать одно замечание. В некоторых случаях для улучшения видимого разрешения в камерах устанавливаются высокочастотные пространственные фильтры. В этом случае изображение объекта, полученное с камеры меньшей размерности, может выглядеть даже более резким, чем изображение этого же объекта, полученное объктивно лучшей камерой. Конечно, это приемлемо, в том случае когда камера используется в системах визуального наблюдения, но совершенно не подходит для построения измерительных систем.

Разрешающая способность и формат ПЗС матриц .

В настоящее время различными компаниями выпускается ПЗС матрицы, охватывающие широчайший диапазон размерностей от нескольких сотен до нескольких тысяч. Так сообщалось о матрице с размерностью 10000х10000, причем в этом сообщении отмечалась не столько проблема стоимости этой матрицы, сколько проблемы хранения, обработки и передачи полученных изображений. Как нам известно, сейчас более или менее широко применяются матрицы с размерностью до 2000х2000.

К наиболее широко, точнее массово применяемым ПЗС матрицам, безусловно следует отнести матрицы с разрешением ориентированным на телевизионный стандарт. Это матрицы, в основном, двух форматов:

  • 512*576;
  • 768*576.
Матрицы 512*576 обычно используются в простых и дешевых системах видеонаблюдения.

Матрицы 768*576 (иногда чуть больше, иногда чуть меньше) позволяют получить максимальное разрешение для стандартного телевизионного сигнала. При этом, в отличии от матриц формата 512*576, они имеют близкую к квадрату сетку расположения светочувствительных элементов, а, следовательно, равную разрешающую способность по горизонтали и вертикали.

Часто фирмы-изготовители телекамер указывают разрешающую способность в телевизионных линиях. Это означает, что камера позволяет разглядеть N/2 темных вертикальных штрихов на светлом фоне, уложенных во вписанный в поле изображения квадрат, где N - заявленное число телевизионных линий. Применительно к стандартной телевизионной таблице это предполагает следующее: подбирая растояние и фокусируя изображение таблицы надо добиться того, чтобы верхний и нижний край изображения таблицы на мониторе совпал с внешним контуром таблицы, отмечаемым вершинами черных и белых призм; далее, после окончательной подфокусировки, считывается число в том месте вертикального клина, где вертикальные штрихи в первый раз перестают разрешаться. Последнее замечание очень важно т.к. и на изображении тестовых полей таблицы, имеющих 600 и более штрихов, часто видны перемежающиеся полосы, которые, на самом деле, являются муаром, образованным биением пространственных частот штрихов таблицы и сетки чувствительных элементов ПЗС матрицы. Такой эффект особенно ярко выражен в камерах с высокочастотными пространственными фильтрами (см. выше)!

Хочется заметить, что при прочих равных условиях (в основном на это может повлиять обьектив) разрешающая способность черно-белых камер однозначно определяется размерностью ПЗС матрицы. Так камера формата 768*576 будет иметь разрешающую способность 576 телевизионных линий, хотя в одних проспектах можно найти величину 550, а в других 600.

Обьектив.

Физический размер ПЗС ячеек является основным параметром, определящим требование к разрешающей способности обьектива. Другим таким параметром может явиться требование по обеспечению работы матрицы в условии световой перегрузки, которое будет рассмотрено ниже.

Для 1/2 дюймовой матрицы SONY ICX039 размер пикселя составляет 8.6мкм*8.3мкм. Следовательно обьектив должен иметь разрешение лучше чем:

1/8.3*10e-3= 120 линий (60 пар линий на миллиметр).

Для обьективов, сделанных под 1/3 дюймовые матрицы, это значение должно быть еще выше, хотя это, как ни странно, не отражается на стоимости и таком параметре как светосила, поскольку эти объективы делают с учетом необходимости формирования изображения на меньшем светочувствительном поле матрицы. Отсюда следует и то, что объективы для матриц меньшего размера не подходят к большим матрицам из-за существенно ухудшающихся характеристиках на краях больших матриц. В тоже время объективы для больших матриц могут ограничить разрешение изображений, получаемых с меньших матриц.

К сожалению, при всем современном изобилии обьективов для телекамер, информацию по их разрешающей способности получить очень тяжело.

Вообще, мы не часто занимаемся подбором объективов, поскольку почти все наши Заказчики устанавливают видеосистемы на уже имеющуюся оптику: микроскопы, телескопы и т.д., поэтому наши сведения о рынке объективов носят характер заметок. Можно только сказать, что разрешающая способность простых и дешевых обьективов находится в диапазоне 50-60 пар линий на мм, что вообще- то недостаточно.

С другой стороны у нас есть информация, что специальные объективы производства Zeiss с разрешением 100-120 пар линий на мм стоят более 1000$.

Так, что при покупке объектива необходимо провести предварительное тестирование. Надо сказать, что большинство Московских продавцов дают объективы на тестирование. Здесь ещё раз уместно вспомнить об эффекте муара, наличие которого, как отмечалось выше, может ввести в заблуждение относительно разрешающей способности матрицы. Так вот, наличие муара на изображении участков таблицы со штрихами выше 600 телевизионных линий в отношении объктива свидетельствует о некотором запасе разрешающей способности последнего, что, конечно, не помешает.

Еще одно, может быть, важное замечание для тех, кого интересуют геометрические измерения. Все объективы в той или иной степени имеют дисторсию (подушкообразное искажение геометрии изображения), причем чем короткофокуснее объектив, тем эти искажения, как правило, больше. По нашему представлению приемлимую дисторсиии для 1/3" и 1/2" камер имеют объективы с фокусными расстояниями больше 8-12 мм. Хотя уровень "приемлимости", конечно, зависит от задач, которые должна решать телекамера.

Разрешающая способность контроллеров ввода изображения

Под разрешающей способность контроллеров ввода изображений следует понимать частоту преобразований аналогово-цифрового преобразователя (АЦП) контроллера, данные которого затем записываются в память контроллера. Очевидно, что есть разумный предел повышения частоты оцифровки. Для устройств, имеющих непрерывную структуру фоточувствительного слоя, например, видиконов, оптимальная частота оцифровки равна удвоенной верхней частоте полезного сигнала видикона.

В отличии от таких светоприемников ПЗС матрицы имеют дискретную топологию, поэтому оптимальная частота оцифровки для них определяется как частота сдвига выходного регистра матрицы. При этом важно, что бы АЦП контроллера работал синхронно с выходным регистром ПЗС матрицы. Только в этом случае может быть достигнуто наилучшее качество преобразования как с точки зрения обеспечения "жесткой" геометрии получаемых изображений так и с точки зрения минимизации шумов от тактовых импульсов и переходных процессов.

Чувствительность ПЗС телекамер

Начиная с 1994 года мы используем в своих устройствах кард-камеры фирмы SONY на основе ПЗС матрицы ICX039. В описании SONY на это устройство указана чувствительность 0.25 лк на объекте при светосиле обьектива 1.4. Уже несколько раз, мы встречали камеры с похожими параметрами (размер 1/2 дюйма, разрешение 752*576) и с декларируемой чувствительностью в 10 а то и в 100 раз большей чем у "нашей" SONY.

Мы несколько раз проверяли эти цифры. В большинстве случаях в камерах разных фирм мы обнаруживали туже самую ПЗС матрицу ICX039. При этом все микросхемы "обвязки" были тоже SONY-вские. Да и сравнительное тестирование показало почти полную идентичность всех этих камер. Так в чем вопрос?

А весь вопрос в том, при каком соотношении сигнал/шум (с/ш) определяется чувствительность. В нашем случае компания SONY добросовестно показала чувствительность при с/ш=46 дб, а другие фирмы либо не указали это, либо указали так, что непонятно при каких условиях производились эти измерения.

Это, вообще, общий бич большинства фирм-изготовителей телекамер - не указывать условия проведения замеров параметров телекамер.

Дело в том, что при уменьшении требования к соотношению с/ш чувствительность камеры возрастает обратно пропорционально квадрату требуемого отношения с/ш:

где:
I - чувствительность;
K - коэффициент пересчета;
с/ш - отношение с/ш в линейных единицах,

поэтому у многих фирм появляется соблазн указывать чувствительность камер при заниженном отношении с/ш.

Можно сказать, что способность матриц лучше или хуже "видеть" определяется количеством зарядов, преобразованных из падающих на её поверхность фотонов и качеством доставки этих зарядов на выход. Количество накопленных зарядов зависит от площади светочувствительного элемента и квантовой эффективности ПЗС матрицы, а качество траспортировки определяется множеством факторов, которые часто сводят к одному - шуму считывания. Шум считывания для современных матриц составляет величину порядка 10-30 электронов и даже менее!

Площади элементов ПЗС матриц различны, но типовое значение для 1/2 дюймовых матриц для телекамер - 8.5мкм*8.5мкм. Увеличение размеров элементов ведет к увеличению размером самих матриц, что повышает их стоимость не столько за счет собственно увеличения цены производства, сколько за счет того, что серийность таких устройств на несколько порядков меньше. Кроме того на площадь светочувствительной зоны влияет топология матрицы в той степени сколько процентов к общей поверхности кристалла занимает чувствительная площадка (фактор заполнения). В некоторых специальных матрицах фактор заполнения заявляется 100%.

Квантовая эффективность (на сколько в среднем изменяется заряд чувствительной ячейки в электронах при падении на её поверхность одного фотона) у современных матриц равна 0.4-0.6 (у отдельных матриц без антиблюминга она достигает 0.85).

Таким образом видно, что чувствительность ПЗС камер, отнесенная к определенному значению с/ш, вплотную подошла к физическому пределу. По нашему заключению типичные значения чувствительности камер общего применения при с/ш=46 лежат в диапазоне 0.15-0.25 лк освещенности на обьекте при светосиле обьектива 1.4.

В связи с этим мы не рекомендуем слепо доверять цифрам чувствительности, указанным в описаниях телекамер, тем более, когда не приведены условия определения этого параметра и, если вы видите в паспорте камеры ценой до 500 $ чувствительность 0.01-0.001 лк в телевизионном режиме, то перед вами образец, мягко говоря, некорректной информации.

О способах повышения чувствительности ПЗС камер

Что же делать, если вам надо получить изображение очень слабого объекта, например, удаленной галактики?

Один из путей решения - накопление изображения во времени. Реализация этого способа позволяет существенно увеличить чувствительность ПЗС. Разумеется этот метод может быть применен для неподвижных обьектов наблюдения или в том случае, когда движение может быть компенсировано, как это делается в астрономии.

Рис1 Планетарная туманность М57.

Телескоп: 60 см, экспозиция - 20 сек., темпеpатуpа во вpемя экспозиции - 20 С.
В центре туманности звездный объект 15 звездной величены.
Изобpажение получено В. Амиpханяном в САО РАH.

Можно утверждать с достаточной точностью, что чувствительность ПЗС камер прямо пропорциональна времени экспозиции.

Например, чувствительность при выдержке 1 сек по отношению к исходной 1/50с увеличится в 50 раз т.е. будет лучше - 0.005 лкс.

Конечно на этом пути есть проблемы, и это, прежде всего, темновой ток матриц, который приносит заряды, накапливаемые одновременно с полезным сигналом. Темновой ток определяется во-первых, технологией изготовления кристалла, во-вторых, уровнем технологии и, конечно, в очень большой степени рабочей температурой самой матрицы.

Обычно для достижения больших времен накопления, порядка минут или десятков минут, матрицы охлаждают до минус 20-40 град. С. Сама по себе задача охлаждения матриц до таких температур решена, но сказать, что это сделать просто нельзя, поскольку всегда есть конструктивные и эксплуатационные проблемы, связанные с запотеванием защитных стекол и сброса тепла с горячего спая термоэлектрического холодильника.

В тоже время технологический прогресс производства ПЗС матриц коснулся и такого параметра, как темновой ток. Здесь достижения весьма значительны и темновой ток некоторых хороших современных матриц очень невелик. По нашему опыту камеры без охлаждения позволяют при комнатной температуре делать экспозиции в пределах десятков секунд, а при компенсации темнового фона и до нескольких минут. Для примера здесь приведена фотография планетарной туманности М57, полученная видеоситемой VS-a-tandem-56/2 без охлаждения с экспозицией 20с.

Второй способ увеличения чувствительности это применение электронно-оптических преобразователей (ЭОП). ЭОПы - это устройства которые усиливают световой поток. Современные ЭОПы могут иметь очень большие величины усиления, однако, не вдаваясь в подробности, можно сказать, что применение ЭОПов может улучшить лишь пороговую чувствительность камеры, а посему его усиление не следует делать слишком большим.

Спектральная чувствительность ПЗС камер


Рис.2 Спектральные характеристики различных матриц

Для некоторых областей применения, важным фактором является спектральная чувствительности ПЗС матриц. Поскольку все ПЗС изготавливаются на основе кремния, то в "голом" виде спектральная чувствительность ПЗС соответствует этому параметру у кремния (см. рис. 2).

Как можно заметить, при всем разнообразии характеристик ПЗС матрицы обладают максимумом чувствительности в красном и ближнем инфракрасном (ИК) диапазоне и совершенно ничего не видят в сине-фиолетовой части спектра. Чувствительность ПЗС в ближнем ИК используется в системах скрытного наблюдения с подсветкой ИК источниками света, а таже при измерении тепловых полей высокотемпературных объектов.


Рис. 3 Типичная спектральная характеристика черно-белых матриц SONY.

Фирма SONY все свои черно-белые матрицы выпускает со следующей спектральной характеристикой (см рис. 3). Как видно их этого рисунка чувствительность ПЗС в ближнем ИК значительно уменьшена, но зато матрица стала воспринимать синюю область спектра.

Для различных специальных целей разрабатываются матрицы чувствительные в ультрафиолетовом и даже рентгеновском диапазоне. Обычно эти устройства уникальны и их цена довально высока.

О прогрессивной и черезстрочной развертке

Стандартный телевизионный сигнал, разрабатывался для системы вещательного телевидения, и имеет с точки зрения современных систем ввода и обработки изображения один большой недостаток. Хотя в телесигнале содержится 625 строк (из них около 576 с видеоинформацией), показываются последовательно 2 полукадра состоящие из четных строк (четный полукадр) и нечетных строк (нечетный полукадр). Это приводит к тому, что если вводится движущееся изображение, то при анализе нельзя использовать разрешение по Y более чем число строк в одном полукадре (288). Кроме этого в современных системах, когда изображение визуализируется на компьютерном мониторе (который имеет прогрессивную развертку), изображение, введенное с черезстрочной телекамеры при движении обьекта наблюдения, вызывает неприятный визуальный эффект раздвоения.

Все методы борьбы с этим недостатком приводят к ухудшению разрешения по вертикали. Единственный способ преодолеть этот недостаток и добиться разрешения, соответствующего разрешению ПЗС матрицы - перейти на прогресивную развертку в ПЗС. Фирмы-изготовители ПЗС выпускают такие матрицы, но из-за малой серийности цена подобных матриц и камер значительно выше чем у обычных. Например цена матрицы SONY с прогрессивной разверткой ICX074 в 3 раза выше чем ICX039 (черезстрочная развертка).

Другие параметры камер

К этим другим можно отнести такой параметр как "блюминг" т.е. расплывание заряда по поверхности матрицы при пересветке отдельных ее элементов. На практике такой случай может встретиться, например, при наблюдении объектов с бликами. Это довольно неприятный эффект ПЗС матриц, поскольку несколько ярких точек могут исказить все изображение. По-счастию, многие современные матрицы содержат антиблюминговые устройсва. Так в описаниях некоторых последних матриц SONY мы нашли 2000, характеризующую допустимую световую перегрузку отдельных ячеек, не приводящую еще к растеканию зарядов. Это достаточно высокое значение, тем более, что добиться этого результата можно, как показал наш опыт, только при специальной подстройке драйверов, управляющих непосредственно матрицей и канала предварительного усиления видеосигнала. Кроме того свой вклад в "растекание" ярких точек вносит и объектив, поскольку при таких больших световых перегрузках даже малое рассеяние за пределы основного пятна дает заметную световую подставку для соседних элементов.

Здесь также необходимо отметить и то, что по некоторым данным, которые мы сами не проверяли, матрицы с антиблюмингом имеют в 2 раза более низкую квантовую эффективность, чем матрици без антиблюминга. В связи с этим, в системах, требующих очень высокой чувствительности, возможно имеет смысл применять матрицы без антиблюминга (обычно это специальные задачи типа астрономических).

О цветных телекамерах

Материалы этого раздела несколько выходят за установленные нами же рамки рассмотрения измерительных систем, тем не менее широкое распространение цветных камер (даже большее чем черно-белых) вынуждает нас внести ясность и в этот вопрос, тем более, что Заказчики часто пытаются использовать с нашими черно-белыми фраймграберами цветные телекамеры, и очень удивляются, когда на полученных изображениях они обнаруживают какие-то разводы, а разрешение изображений оказывается недостаточным. Поясним в чем тут дело.

Существуют 2 способа формирования цветного сигнала:

  • 1. использование одноматричной камеры.
  • 2. использование системы из 3 ПЗС матриц с цветоделительной головкой для получения R, G, B компоненов цветного сигнала на этих матрицах.

Второй путь обеспечивает наилучшее качество и только он позволяет получить измерительные системы, однако камеры, работающие на этом приципе достаточно дороги (более 3000$).

В большинстве случаев используются одноматричные ПЗС камеры. Рассмотрим их принцип работы.

Как явствует из достаточно широкой спектральной характиристики ПЗС матрицы, она не может определить "цвет" фотона, попавшего на поверхность. Поэтому для того, чтобы вводить цветное изображение перед каждым элементом ПЗС матрицы устанавливается светофильтр. При этом общее число элементов матрицы остается прежним. Фирма SONY, например, выпускает совершенно одинаковые ПЗС матрицы для черно-белого и цветного варианта, которые отличаются только наличием у цветной матрицы сетки светофильтров, нанесенных непосредственно на чувствительные площадки. Существуют несколько схем раскраски матриц. Вот одна из них.

Здесь используются 4 разных светофильтра (см рис. 4 и рис. 5).


Рис 4. Распредение светофильтров на элементах ПЗС матрицы



Рис 5. Спектральная чувствительность элементов ПЗС с различными светофильтрами.

Y=(Cy+G)+(Ye+Mg)

В строке A1 получают "красный" цветоразностный сигнал как:

R-Y=(Mg+Ye)-(G+Cy)

а в строке A2 получают "голубой" цветоразностный сигнал:

-(B-Y)=(G+Ye)-(Mg+Cy)

Отсюда ясно, что пространственное разрешение цветной ПЗС матрицы по сравнению с такой же черно-белой обычно в 1.3-1.5 раза хуже по горизонтали и по вертикали. За счет применения светофильтров чувствительность цветной ПЗС также хуже, чем у черно-белой. Таким образом можно сказать, что, если имеется одноматричный приемник 1000*800, то реально можно получить около 700*550 по яркостному сигналу и 500*400 (возможен вариант 700*400) по цветному.

Отвлекаясь от технических вопросов хочется заметить, что с рекламными целями многие фирмы-изготовители электронных фотоаппаратов сообщают совершенно непонятные данные по своей технике. Например, фирма "Кодак" обьявляет разрешение у своего электронного фотоаппарата DC120 1200*1000 при матрице 850х984 пикселей. Но господа - информация из пустого места не возникает, хотя визуально смотрится и неплохо!

О постранственном разрешении цветового сигнала (сигнала который несет информацию о цвете изображения) можно сказать, что она как минимум в 2 раза хуже, чем разрешение по черно-белому сигналу. Кроме того "вычисленный" цвет выходного пиксела не есть цвет соответствующего элемента исходного изображения, а лишь результат обработки яркостей различных элементов исходной картинки. Грубо говоря, за счет резкого различия яркостей соседних элементов объекта может быть вычислен цвет, которого вовсе здесь и нет, при этом незначительное смещение камеры приведет к резкому изменению выходного цвета. Для примера: граница темного и светлого поля серого цвета будет выглядеть, состоящей из разноцветных квадратиков.

Все эти рассуждения касаются только физического принципа получения информации на цветных ПЗС матрицах, при этом надо учесть, что обычно видеосигнал на выходе цветных камер представлен в одном из стандартных форматов PAL, NTSC, реже S-video.

Форматы PAL и NTSC хороши тем, что могут сразу быть воспроизведены на стандартных мониторах с видеовходом, но при этом надо помнить, что этими стандартами для сигнала цветности предусмотрена существенно более узкая полоса, поэтому правильнее здесь говорить о раскрашенном, а не о цветном изображении. Ещё одной неприятной особенностью камер с видеосигналами, несущими цветовую компоненту, является появление, упомянутых выше, разводов на изображении, полученных черно-белыми фраймграберами. И дело здесь в том, что сигнал цветности находится почти в середине полосы видеосигнала, создавая помеху при вводе кадра изображения. Мы же не видим эту помеху на телевизионном мониторе потому, что фаза этой "помехи" через четыре кадра изменяется на противоположную и усредняется глазом. Отсюда недоумении Заказчика, получающего изображение с помехой, которую он не видит.

Из этого следует, что, если вам необходмо проводить какие-то измерения или дешифровку объектов по цвету, то к этом у вопросу надо подойти с учетом, как сказанного выше, так и других особенностей вашей задачи.

О CMOS матрицах

В мире электроники все меняется очень быстро и хотя область фотоприемников одна из наиболее консервативных, но и тут в последнее время на подходе новые технологии. В первую очередь это относится к появлению CMOS телевизионных матриц.

Действительно, кремний является светочувствитерным элементом и любое полупроводниковое изделие можно использовать как датчик. Использование CMOS технологии дает несколько очевидных преимуществ по сравнению с традиционной.

Во-первых, технология CMOS хорошо освоена и позволяет выпускать элементы с большим выходом годных изделий.

Во-вторых технология CMOS позволяет разместить на матрице кроме светочувствительной области и различные устройства обрамления (вплоть до АЦП), которые раньше устанавливались "снаружи". Это позволяет выпускать телекамеры с цифровым выходом "на одном кристале".

Благодаря этим преимуществам становиться возможен выпуск значительно более дешевых телевизионных камер. Кроме этого значительно расширяется круг фирм производящих матрицы.

В настоящий момент выпуск телевизионных матриц и камер на CMOS технологии только налаживается. Информация о параметрах таких устройств весьма скудна. Можно лишь отметить, что параметры этих матриц не превосходят достигнух сейчас, что же касается цены, то тут их преимущества неоспоримы.

Приведу в качестве примера однокристальную цветную камеру фирмы Photobit PB-159. Камера выполнена на одном кристале и имеет следующие технические параметры:

  • разрешение - 512*384;
  • размер пикселя - 7.9мкм*7.9мкм;
  • чувствительность - 1люкс;
  • выход - цифровой 8-ми битный SRGB;
  • корпус - 44 ноги PLCC.

Таким образом камера проигрывает в чувствительности раза в четыре, кроме того из информации по другой камере ясно, что в этой технологии есть проблемы со сравнительно большим темновым током.

О цифровых фотоаппаратах

В последние время появился и стремительно растет новый сегмент рынка, использующий ПЗС и CMOS матрицы - цифровые фотоаппараты. Причем в настояший момент происходит резкое повышение качества этих изделий одновременно с резким понижением цены. Действительно еще 2 года назад одна только матрица с разрешением 1024*1024 стоила около 3000-7000$ , а сейчас фотоаппараты с такими матрицами и кучей прибамбасов (ЖК экран, память, вариообьектив, удобный корпус и т.д.) можно купить дешевле 1000$. Это можно обьяснить только переходом на крупносерийное производство матриц.

Поскольку эти фотоаппараты основаны на ПЗС и CMOS матрицах, то все рассуждения в этой статье о чувствительности, о принципах формирования цветного сигнала действительны и для них.

Вместо заключения

Накопленый нами практический опыт позволяет сделать следующие выводы:

  • технология производства ПЗС матриц с точки зрения чувствительности и шумов весьма близка к физическим пределам;
  • на рынке телевизионных камер можно найти камеры приемлемого качества, хотя для достижения более высоких параметров возможно потребуется подрегулировка;
  • не следует обольщаться цифрам высокой чувствительности, приведенным в проспектах на камеры;
  • и ещё, цены на абсолютно одинаковые по качеству и даже на просто одинаковые камеры у разных продавцов могут отличаться более чем в два раза!

Матрица ПЗС (Прибор с Зарядовой Связью) или по-английски CCD (Charge-Coupled Device) представляет собой матрицу светочувствительных элементов, способных накапливать электрический заряд под действием света и передавать этот заряд от одного элемента к другому. Матрицы ПЗС используются в подавляющем большинстве цифровых фотоаппаратов и видеокамер.

Принцип действия светочувствительных элементов матрицы состоит в следующем. Основой матрицы служит подложка из кремния p-типа. Кремний p-типа получают добавлением к кремнию примесей, например атомов бора. В результате добавления примеси в кристалле кремния создаются свободные, положительно заряженные носители – дырки. Дырки являются основными носителями заряда, поскольку свободных электронов в таком кристалле практически нет. Реакция на свет является следствием явления внутреннего фотоэффекта, когда фотон, попадая в кристалл кремния, генерирует пару носителей зарядов – электрон и дырку. На поверхность подложки нанесен слой диэлектрика – двуокиси кремния, полученной на поверхности подложки термическим окислением. Двуокись кремния является прозрачной и не препятствует проникновению света. Поверх диэлектрика нанесены электроды из поликристаллического кремния, осажденного из газовой фазы. При подаче на электрод положительного потенциала, дырки вытесняются из области кремния, находящейся вблизи этого электрода и вокруг него начинают скапливаться электроны, возникающие в результате внутреннего фотоэффекта. Причем этих электронов тем больше, чем больше света попало на близлежащий участок подложки. Если на этом электроде убрать положительный потенциал, а создать его на соседнем электроде, накопленный заряд переместится на соседний электрод. Изменяя потенциалы на электродах можно передвигать накопленный заряд от одного электрода к другому, практически не меняя его величины.

Каждый светочувствительный элемент имеет три электрода, что позволяет управлять направлением перемещения зарядов. Если на первых электродах всех элементов имеется положительный потенциал, то электроны будут скапливаться именно под этими, первыми электродами. Если уменьшить положительный потенциал на первых электродах и увеличить на вторых, то накопленный заряд переместится к ним. Если теперь уменьшить потенциал на вторых электродах и увеличить его на третьих, заряд переместится под третьи электроды. Если уменьшить заряд под третьими электродами, и увеличить на первых, заряд переместится между элементами, поскольку первый электрод соседнего элемента окажется к нему ближе. Таким образом, матрица светочувствительных элементов может последовательно перемещать заряды от одного элемента к другому через всю матрицу.

По принципу перемещения и считывания заряда различают три типа ПЗС матриц. Это матрицы с полнокадровым переносом (Full-Frame Transfer CCD, FF CCD), с кадровым переносом (Frame Transfer CCD, FT CCD) и с чересстрочным переносом (Interline CCD, IL CCD).

Матрицы с полнокадровым переносом используют для переноса заряда саму матрицу светочувствительных элементов, поочередно передавая каждую строку матрицы в сдвиговый регистр, откуда данные поэлементно передаются на вход усилителя, и далее, в аналого-цифровой преобразователь. Чтобы исключить изменение зарядов под действием света во время их переноса, для таких матриц необходим механический затвор.

Матрицы с кадровым переносом имеют промежуточную, защищенную от света область хранения. После экспонирования кадр перемещается в защищенную область, откуда построчно поступает в сдвиговый регистр, и далее в усилитель и аналого-цифровой преобразователь. Такие матрицы не требуют механического затвора, однако такая конструкция существенно увеличивает стоимость матрицы.

Если в матрицах с кадровым переносом весь кадр целиком переносится в единую буферную область, то в матрицах с чересстрочным переносом для каждого столбца светочувствительных элементов имеется свой буферный регистр, защищенный от воздействия света. Заряды из каждого столбца переносятся в буфер, и затем поэлементно передаются из буферных регистров в сдвиговый регистр. Такая схема не требует механического затвора и позволяет реализовать очень короткие выдержки. Однако основной недостаток этой схемы состоит в том, что существенная часть площади поверхности матрицы занята буферными регистрами, что сильно снижает ее светочувствительность. Для преодоления этого недостатка поверхность матрицы покрывают микролинзами, концентрирующими световой поток, падающий на всю поверхность элемента матрицы на относительно небольшой площади его поверхности, чувствительной к свету.

Основными характеристиками ПЗС матриц, помимо ее разрешения, являются ее физические размеры, светочувствительность, уровень шума, динамический диапазон.

Определяющей характеристикой при этом являются физические размеры матрицы, а светочувствительность, уровень шума и динамический диапазон во многом зависят от ее физических размеров.

Если разделить ширину и высоту матрицы в миллиметрах на количество пикселей в матрице по горизонтали и вертикали, получатся линейные размеры пикселя. Для современных матриц линейные размеры пикселей составляют около 3-10 мкм по вертикали и горизонтали. Именно размер пикселей влияет в наибольшей степени на светочувствительность, уровень шума и динамический диапазон матрицы. При этом следует учитывать, что светочувствительный элемент может занимать не всю площадь поверхности пикселя, часть поверхности занимают дополнительные элементы, хотя в некоторой степени это обстоятельство исправляется при помощи применения микролинз.

Динамический диапазон матрицы определяется как соотношение величины максимального заряда, который может быть накоплен в светочувствительном элементе, к минимально различимому заряду, который в свою очередь определяется уровнем шума. Понятно, что максимальный заряд пропорционален площади светочувствительного элемента – чем больше размер положительно заряженного электрода, тем больше электронов может быть накоплено вблизи него.

Чувствительность матрицы определяется как соотношение уровня полезного сигнала – заряда получаемого под воздействием света, к уровню шума. Заряд получаемый под воздействием света тем больше, чем большее количество фотонов попадет на светочувствительный элемент, и следовательно, чем больше его площадь.

Уровень шума матрицы складывается из нескольких составляющих, таких как тепловой шум, шум переноса, шум считывания и других. Тепловой шум возникает вследствие того, что свободные электроны могут образовываться в полупроводнике не только под воздействием света, но и в результате тепловых колебаний. Это явление называется термоэлектронная эмиссия, и хотя и представляет собой случайный процесс, происходит более-менее равномерно по всему объему полупроводника. В результате, в каждый пиксель попадает некоторое количество тепловых электронов. Понятно, что их количество также зависит от площади пикселя – чем больше площадь, тем больше тепловых электронов в нем образуется. В разных пикселях может образовываться разное количество тепловых электронов, однако в основном оно будет составлять значение, близкое к некоторой средней величине. При этом степень искажения изображения будет зависеть не столько от этой средней величины, сколько от разницы в количестве тепловых электронов в разных пикселях. Кроме того, среднее количество тепловых электронов вполне можно определить использовав крайние, не участвующие в формировании изображения и не засвеченные пиксели, после чего скорректировать величины зарядов всех пикселей на эту величину. Разницу в количестве тепловых электронов определить не получится, но эта разница практически не зависит от площади пикселя. Величина шума переноса и шума считывания также не зависит от площади пикселя, следовательно, при увеличении площади пикселя соотношение величины полезного сигнала к суммарной величине шумов будет увеличиваться.

Можно посмотреть на проблему и немного с другой стороны. Если представить себе ПЗС матрицу, в которой структура полупроводника абсолютно идеальна, легирующие примеси распределены абсолютно равномерно, форма и размер элементов соблюдены достаточно строго, то станет понятно, что в такой матрице тепловые электроны будут возникать практически одинаково во всех пикселях, все пиксели будут одинаково реагировать на свет, и в результате мы получим изображение, максимально соответствующее оригиналу. Однако на практике идеальных матриц не бывает, любая матрица будет иметь те или иные дефекты структуры. Соответственно и количество тепловых электронов будет не одинаково в разных пикселях, и их реакция на одно и то же количество света будет отличаться. В результате уровень шума возрастет, и возрастет тем сильнее, чем большие дефекты будут встречаться в матрице. При производстве матриц, количество и величину дефектов стараются свести к минимуму, однако чем мельче дефекты, тем труднее их предотвратить. При увеличении размеров матрицы, и размеров каждого пикселя, влияние этих дефектов снижается, а соответственно, снижается и уровень шума.

Разница в чувствительности к свету отдельных пикселей обычно малозаметна, однако в большинстве матриц встречаются пиксели, имеющие нетипично большую чувствительность. На практике это проявляется при съемке с большими выдержками в виде ярких цветных точек на темном фоне. Обычно такие пиксели называют «горячими».

Количество таких пикселей на разных типах и разных экземплярах матриц отличается, и как правило, не превышает десятка пикселей на всю матрицу. Для борьбы с этим явлением существуют специальные средства, встроенные во внутреннее программное обеспечение фотоаппарата. Если эти средства не помогают, бороться с ним можно и при помощи графических редакторов вручную, или используя специальные программы.

Реальная чувствительность ПЗС матриц, определяемая как соотношение полезного сигнала и шума, как правило, недоступна человеку, использующему фотоаппарат. Да и информативность этой электронной характеристики для фотографа была бы крайне низкой. Поэтому производители цифровых фотоаппаратов не указывают ее среди технических характеристик, а вместо этого указывают чувствительность фотоаппарата в единицах ISO, аналогичных единицам измерения чувствительности фотопленки. Однако чувствительность фотоаппарата мало связана с реальной чувствительностью матрицы.

Большинство фотоаппаратов может иметь несколько режимов с разной чувствительностью. В большинстве случаев, изменение чувствительности фотоаппарата осуществляется при помощи изменения аналогового усиления получаемого с матрицы сигнала. Понятно, что при увеличении усиления, вместе с полезным сигналом усиливаются и шумы.

Поскольку светочувствительные элементы ПЗС матриц реагируют на количество света, но не могут различать его спектральный состав, матрицы ПЗС по своей природе являются черно-белыми. И хотя разница в реакции на свет различной частоты в ПЗС матрицах все-таки существует, использовать это в обычных матрицах невозможно. Поэтому, для получения цветного изображения в цифровых фотоаппаратах применяют различные способы.

В высококачественных видеокамерах, также оснащенных ПЗС матрицами, применяют один из самых эффективных способов получения цветного изображения. При помощи специальной призмы световой пучок из объектива разделяют на три части, и направляют на три отдельные ПЗС матрицы, перед каждой из которых размещен светофильтр соответствующего цвета. Матрицы видеокамер имеют невысокое разрешение, определяемое параметрами стандартного видеосигнала, и соответственно не очень высокую стоимость. В результате такое техническое решение приводит к относительно небольшому увеличению стоимости камеры при резком улучшении качества изображения. В цифровых фотоаппаратах, где стоимость светочувствительной матрицы составляет весьма существенную часть стоимости аппарата, такое решение привело бы к недопустимому увеличению стоимости. Поэтому такой способ получения цветного изображения не применяют.

В некоторых профессиональных студийных аппаратах используют последовательную съемку трех отдельных кадров через соответствующие цветные светофильтры, однако такой способ годится только для съемки в студийных условиях неподвижных объектов.

Наибольшее распространение в цифровых фотоаппаратах получил способ на основе использования цветных микрофильтров, нанесенных на каждый пиксель. Смысл этого способа сводится к тому, что каждый пиксель реагирует только на свет определенного цвета, а цвета пикселей при этом чередуются. После считывания и оцифровки данных с ПЗС матрицы их программным способом обрабатывают, рассчитывая значение всех трех цветов для каждого пикселя. Понятно, что такая обработка есть не что иное, как интерполяция, и приводит к ухудшению разрешающей способности матрицы. Однако это ухудшение происходит в основном в цветовых каналах изображения, в канале яркости разрешение практически не ухудшается. Кроме того, человеческий глаз слабее воспринимает цвет мелких деталей, поэтому ухудшение разрешения в цветовых каналах практически незаметно.

Еще одна проблема может возникать в ПЗС матрицах при съемке ярко освещенных объектов. Если на светочувствительный элемент попадает слишком большое количество света, число электронов, сгенерированных в результате внутреннего фотоэффекта начинает превышать то количество электронов, которое может удерживаться вблизи положительно заряженного электрода. В результате, электроны начинают перемещаться внутри кристалла, скапливаясь под ближайшими положительно заряженными электродами, емкость которых еще не исчерпана. Это явление получило название блюминга и на практике приводит к размыванию изображения. Конечно, проще всего было бы просто уменьшить количество света, попадающего на матрицу, изменив экспозицию. Однако во многих случаях это приведет к тому, что детали в темных участках кадра станут неразличимыми. Поэтому для борьбы с этим явлением применяют так называемый электронный дренаж. Для этого, вблизи светочувствительных элементов размещают каналы, по которым лишние электроны удаляются из матрицы. По схеме реализации различают вертикальный дренаж, когда электроны удаляются при помощи подачи положительного потенциала на подложку матрицы, и боковой дренаж, когда между рядами пикселей размещают положительно заряженные проводники. В первом случае это приводит к некоторому снижению максимальной емкости пикселя, а во втором – к уменьшению полезной площади поверхности матрицы.

Вендоры сейчас предлагают огромный выбор камер для видеонаблюдения. Модели отличаются не только общими для всех камер параметрами - фокусным расстоянием, углом обзора, светочувствительностью и т. д.,- но и различными фирменными "фишками", которыми каждый производитель стремится оснастить свои устройства.

Поэтому зачастую краткое описание характеристик камеры для видеонаблюдения представляет собой пугающий перечень непонятных терминов, к примеру: 1/2.8" 2.4MP CMOS, 25/30fps, OSD Menu, DWDR, ICR, AWB, AGC, BLC, 3DNR, Smart IR, IP67, 0.05 Lux и это еще далеко не все.

В предыдущей статье мы остановились на видеостандартах и классификации камер в зависимости от них . Сегодня мы разберем основные характеристики камер для видеонаблюдения и расшифровку обозначений специальных технологий, используемых для улучшения качества видеосигнала:

  1. Фокусное расстояние и угол обзора
  2. Апертура (число F) или светосила объектива
  3. Регулировка диафрагмы (автодиафрагма)
  4. Электронный затвор (AES, скорость затвора, выдержка)
  5. Чувствительность (светочувствительность, минимальное освещение)
  6. Классы защиты IK (Vandal-proof, антивандальные) и IP (от влаги и пыли)

Тип матрицы (CCD ПЗС, CMOS КМОП)

Существует 2 типа матриц камер видеонаблюдения: CCD (на русском - ПЗС) и CMOS (на русском - КМОП). Они отличаются как устройством, так и принципом действия.

CCD CMOS
Последовательное считывание из всех ячеек матрицы Произвольное считывание из ячеек матрицы, что уменьшает риск смиринга - появления вертикального размазывания точечных источников света (ламп, фонарей)
Низкий уровень шумов Высокий уровень шума из-за так называемых темповых токов
Высокая динамическая чувствительность (больше подходят для съемки движущихся объектов) Эффект "бегущего затвора" - при съемке быстро движущихся объектов могут возникать горизонтальные полосы, искажения картинки
Кристалл используется только для размещения светочувствительных элементов, остальные микросхемы нужно размещать отдельно, что увеличивает размеры и стоимость камеры Все микросхемы можно расположить на одном кристалле, что делает производство камер с CMOS-матрицами простым и недорогим
Благодаря использованию площади матрицы только под светочувствительные элементы, возрастает эффективность ее использования - она приближается к 100% Низкое энергопотребление (почти в 100 раз меньше, чем у ПЗС матриц)
Дорогое и сложное производство Быстродействие

Долгое время считалось, что матрица CCD дает гораздо более качественное изображение, чем CMOS. Однако современные матрицы КМОП зачастую практически ничем не уступают ПЗС, особенно в том случае, если к системе видеонаблюдения нет слишком высоких требований.

Размер матрицы

Обозначает размер матрицы по диагонали в дюймах и пишется в виде дроби: 1/3", 1/2", 1/4" и т. д.

Стандартно считается, что чем больше размер матрицы, тем лучше: меньше шумов, четче картинка, больше угол обзора. Однако на самом деле лучшее качество изображения обеспечивает не размер матрицы, а размер ее отдельной ячейки или пикселя - чем он больше, тем лучше. Поэтому при выборе камеры для видеонаблюдения нужно рассматривать размер матрицы вместе с количеством пикселей.

Если матрицы с размерами 1/3" и 1/4" имеют одинаковое количество пикселей, то в этом случае матрица 1/3", естественно, будет давать лучшее изображение. А вот если на ней пикселей больше, то нужно брать в руки калькулятор и подсчитывать примерный размер пикселя.

К примеру, из приведенных ниже расчетов размера ячейки матрицы можно увидеть, что во многих случаях размер пикселя на матрице 1/4" оказывается большим, чем на матрице 1/3", а значит, видеоизображение с 1/4" , хотя она и меньше по размеру, будет лучше.

Размер матрицы Количество пикселей (млн) Размер ячейки (мкм)
1/6 0.8 2,30
1/3 3,1 2,35
1/3,4 2,2 2,30
1/3,6 2,1 2,40
1/3,4 2,23 2,45
1/4 1,55 2,50
1 / 4,7 1,07 2,50
1/4 1,33 2,70
1/4 1,2 2,80
1/6 0,54 2,84
1 / 3,6 1,33 3,00
1/3,8 1,02 3,30
1/4 0,8 3,50
1/4 0,45 4,60

Фокусное расстояние и угол обзора

Эти параметры имеют большое значение при выборе камеры для видеонаблюдения, и они тесно связаны между собой. Фактически, фокусное расстояние объектива (часто обозначается f)- это расстояние между линзой и матрицей.

На практике же фокусное расстояние определяет угол и дальность обзора камеры:

  • чем меньше фокусное расстояние, тем шире угол обзора и тем меньше деталей можно рассмотреть на объектах, расположенных вдали;
  • чем больше фокусное расстояние, тем уже угол обзора видеокамеры и тем детальнее изображение удаленных объектов.


Если вам необходим общий обзор какой-то площади, и вы хотите использовать для этого как можно меньше камер - покупайте камеру с небольшим фокусным расстоянием и, соответственно, широким углом обзора.

А вот на тех участках, где требуется детальное наблюдение за сравнительно небольшой площадью, лучше поставить камеру с увеличенным фокусным расстоянием, направив ее на объект наблюдения. Это часто используется на кассах супермаркетов и банков, где нужно видеть номинал купюр и другие подробности расчетов, а также на въезде на автостоянки и прочие площадки, где необходимо различать автомобильный номер на большом расстоянии.


Самое распространенное фокусное расстояние - 3,6 мм. Оно примерно соответствует углу обзора человеческого глаза. Камеры с таким фокусным расстоянием используются для видеонаблюдения в небольших помещениях.

В представленной ниже таблице - информация и взаимосвязи фокусного расстояния, угла обзора, дистанции распознавания и т. д. для наиболее распространенных фокусов. Цифры примерные, так как зависят не только от фокусного расстояния, но и других параметров оптики камеры.

В зависимости от ширины угла обзора камеры для видеонаблюдения принято делить на:

  • обычные (угол обзора 30°-70°);
  • широкоугольные (угол обзора примерно от 70°);
  • длиннофокусные (угол обзора менее 30°).

Буквой F, только обычно заглавной, обозначается также светосила объектива - поэтому при чтении характеристик обращайте внимание - в каком контексте употребляется параметр.

Тип объектива

Фиксированный (монофокальный) объектив - самый простой и недорогой. Фокусное расстояние в нем зафиксировано, и его нельзя поменять.

В варифокальных (вариофокальных) объективах можно менять фокусное расстояние. Его настройка производится вручную, обычно один раз, когда камера устанавливается на место съемки, а в дальнейшем - по необходимости.

Трансфакторные или зум-объективы также предоставляют возможность менять фокусное расстояние, но удаленно, в любой момент времени. Изменение фокусного расстояния производится с помощью электропривода, поэтому их также называют моторизированными объективами.

"Рыбий глаз" (fisheye, фишай) или панорамный объектив позволяет установить всего одну камеру и достичь при этом 360° обзора.


Конечно, в результате получаемое изображение имеет эффект "пузыря" - прямые линии искривлены, однако в большинстве случаев камеры с такими объективами позволяют разделять одно общее панорамное изображение на несколько отдельных, с корректировкой под привычное человеческому глазу восприятие.

Pinhole-объективы позволяют вести скрытое видеонаблюдение, благодаря своему миниатюрному размеру. Фактически, пинхол-камера не имеет объектива, а лишь миниатюрное отверстие вместо него. В Украине использование скрытого видеонаблюдения серьезно ограничено, как и сбыт устройств для него.

Это наиболее распространенные типы объектива. Но если вдаваться более глубоко, объективы разделяются также по другим параметрам:

Апертура (число F) или светосила объектива

Определяет способность камеры снимать качественную картинку в условиях плохой освещенности. Чем больше число F, тем менее открыта диафрагма и тем большая освещенность требуется камере. Чем меньше апертура, тем больше открыта диафрагма, а видеокамера может давать четкое изображение даже при плохом освещении.

Буквой f (обычно строчной) обозначается также фокусное расстояние, поэтому при чтении характеристик обращайте внимание - в каком контексте употребляется параметр. К примеру, на картинке выше апертура обозначена маленькой f.

Крепление объектива

Для крепления объектива к видеокамере существует 3 вида креплений: C, CS, M12.

  • Крепление C сейчас используется редко. Объективы C можно установить на камеру с креплением CS при помощи специального кольца.
  • Крепление CS - наиболее распространенный тип. Объективы CS несовместимы с камерами C.
  • Крепление M12 используется для объективов небольшого размера.

Регулировка диафрагмы (автодиафрагма), АРД, ARD

Диафрагма отвечает за поступление света на матрицу: при усиленном потоке света она сужается, препятствуя таким образом засвечиванию картинки, а при недостаточном освещении, наоборот, раскрывается, чтобы на матрицу попадало больше света.

Различают две большие группы камер: с фиксированной диафрагмой (сюда же можно отнести камеры вообще без нее) и с регулируемой .

Регулировка диафрагмы в различных моделях камер для видеонаблюдения может осуществляться:

  • Вручную.
  • Автоматически видеокамерой с помощью постоянного тока, на основании количества света, попадающего на матрицу. Такая автоматическая регулировка диафрагмы (АРД) обозначается как DD (Direct Drive) или DD/DC .
  • Автоматически специальным модулем, встроенным в объектив и отслеживающим световой поток, проходящий через относительное отверстие. Такой способ АРД в спецификациях видеокамер обозначается как VD (Video Drive) . Он эффективен даже при попадании в объектив прямых солнечных лучей, но камеры наблюдения с ним дороже.

Электронный затвор (AES, скорость затвора, выдержка, shutter)

У разных производителей этот параметр может обозначаться как автоматический электронный затвор, выдержка или скорость затвора, но по сути он обозначает одно и то же - время, в течение которого свет экспонируется на матрицу. Выражается он обычно в виде 1/50-1/100000s.

Действие электронного затвора чем-то схоже с автоматической регулировкой диафрагмы - он регулирует светочувствительность матрицы, чтобы подстроить ее под уровень освещенности помещения. На рисунке ниже можно увидеть качество изображения в условиях недостаточной освещенности при разной скорости затвора (на рисунке ручная настройка, в то время как AES делает это автоматически).

В отличие от АРД подстройка происходит не путем регулировки светового потока, попадающего на матрицу, а путем регулировки выдержки, длительности накопления электрического заряда на матрице.

Однако возможности электронного затвора гораздо слабее, чем автоматической регулировки диафрагмы, поэтому на открытых пространствах, где уровень освещения изменяется от сумерек до яркого солнечного света, лучше использовать камеры с АРД. Видеокамеры с электронным затвором оптимальны для помещений, где уровень освещения в течение времени меняется незначительно.

Характеристики электронного затвора мало чем отличаются у различных моделей. Полезной фичей является возможность ручной регулировки скорости затвора (выдержки), так как в условиях плохой освещенности автоматически выставляются низкие значения, а это приводит к смазанности изображения движущихся объектов.

Sens-UP (или DSS)

Это функция накопления заряда матрицы в зависимости от уровня освещенности, т. е. увеличения ее чувствительности в ущерб скорости. Необходима для съемки качественной картинки в условиях плохой освещенности, когда отслеживание скоростных событий не критично (на объекте наблюдения нет быстро движущихся объектов).

Она тесно связана с описанной выше скоростью затвора (выдержкой). Но если скорость затвора выражается во временных единицах, то Sens-UP - в коэффициенте увеличения выдержки (xN): время накопления заряда (выдержка) увеличивается в N раз.

Разрешение

Тему разрешений камер видеонаблюдения мы немного затронули в прошлой статье . Разрешение камеры - это, фактически, размер получаемой картинки. Он измеряется либо в ТВЛ (телевизионных линиях), либо в пикселях. Чем больше разрешение, тем больше деталей вы сможете рассмотреть на видео.

Разрешение видеокамеры в ТВЛ - это количество вертикальных линий (переходов яркости), размещенных на картинке по горизонтали. Он считается более точным, поскольку дает представление именно о размере картинки на выходе. Тогда как разрешение в мегапикселях, указываемое в документации производителя, может вводить покупателя в заблуждение - оно часто относится не к размеру итоговой картинки, а к числу пикселей на матрице. В этом случае нужно обращать внимание на такой параметр, как "Эффективное количество пикселей"

Разрешение в пикселях - это размер картинки по горизонтали и вертикали (если он указывается в виде 1280×960) или общее количество пикселей на картинке (если он указывается как 1 МП (мегапиксель), 2 Мп и т. д.). Собственно, разрешение в мегапикселях получить очень просто: нужно умножить количество пикселей по горизонтали (1280) на количество по вертикали (960) и разделить на 1 000 000. Итого 1280×960 = 1,23 МП.

Как пересчитать ТВЛ в пиксели и наоборот? Точной формулы пересчета нет. Для определения разрешения видео в ТВЛ нужно использовать специальные тестовые таблицы для видеокамер. Для примерного представления соотношения можно воспользоваться таблицей:


Эффективные пиксели

Как мы уже сказали выше, часто размер в мегапикселях, указываемый в характеристиках видеокамер, не дает точного представления о разрешении получаемого изображения. Производитель указывает количество пикселей на матрице (сенсоре) камеры, но далеко не все из них участвуют в создании картинки.

Поэтому был введен параметр "Количество (число) эффективных пикселей", который как раз и показывает, сколько пикселей формируют итоговое изображение. Чаще всего он соответствует реальному разрешению получаемой картинки, хотя бывают и исключения.

ИК (инфракрасная) подсветка, IR

Позволяет проводить съемку в ночное время. Возможности матрицы (сенсора) камеры видеонаблюдения гораздо выше, чем человеческого глаза - к примеру, камера может "видеть" в инфракрасном излучении. Это свойство стали использовать для съемок в ночное время и в неосвещенных/слабоосвещенных помещениях. При достижении определенного минимума освещения видеокамера переходит в режим съемки в инфракрасном диапазоне и включает ИК-подсветку (IR).

Светодиоды IR встраиваются в камеру таким образом, чтобы свет от них не попадал в объектив камеры, а освещал угол ее обзора.

Изображение, полученное в условиях слабого освещения с помощью инфракрасной подсветки, всегда черно-белое. Цветные камеры, которые поддерживают ночную съемку, также переходят в черно-белый режим.

Значения ИК-подсветки в видеокамерах обычно даются в метрах - т. е. на сколько метров от камеры подсветка позволяет получить четкое изображение. IR-подсветку с большой дальностью называют ИК-прожектором.

Что такое Smart ИК, Smart IR?

Умная ИК-подсветка (Smart ИК) позволяет увеличивать или уменьшать мощность инфракрасного излучения в зависимости от дистанции до объекта. Это делается для того, чтобы объекты, оказавшиеся близко к камере, не были засвечены на видео.

ИК фильтр (ICR), режим день/ночь

Использование инфракрасной подсветки для съемок в ночное время имеет одну особенность: матрица таких камер выпускается с повышенной чувствительностью к инфракрасному диапазону. Это создает проблему для съемок в дневное время, так как матрица регистрирует инфракрасный спектр и днем, что нарушает нормальную цветность получаемого изображения.

Поэтому такие камеры работают в двух режимах - день и ночь. Днем матрицу закрывает механический инфракрасный фильтр (ICR), который отсекает инфракрасное излучение. Ночью фильтр сдвигается, позволяя лучам ИК-спектра беспрепятственно попадать на матрицу.

Иногда переключение режима день/ночь реализуется программно, однако такое решение дает менее качественные изображения.

Фильтр ICR может устанавливаться и в камерах без инфракрасной подсветки - для отсечения инфракрасного спектра в дневное время и улучшения цветопередачи видео.

Если в камере нет фильтра IGR, потому что она изначально не была предназначена для съемок в ночное время, ей нельзя добавить функцию ночной съемки, просто докупив отдельный модуль с ИК-подсветкой. В этом случае цветность дневного видео будет существенно искажаться.

Чувствительность (светочувствительность, минимальное освещение)

В отличие от фотокамер, где светочувствительность выражается параметром ISO, светочувствительность камер видеонаблюдения чаще всего выражается в люксах (Lux) и означает минимальное освещение, при котором камера способна давать видеоизображение хорошего качества - четкое и без шумов. Чем ниже значение этого параметра, тем выше чувствительность.

Камеры для видеонаблюдения подбираются в соответствии с теми условиями, в которых их планируется эксплуатировать: к примеру, если минимальная чувствительность камеры составляет 1 люкс, то четкого изображения в ночное время без дополнительной инфракрасной подсветки с нее получить не удастся.

Условия Уровень освещенности
Естественное освещение на улице в безоблачный солнечный день свыше 100 000 люкс
Естественное освещение на улице в солнечный день с легкими облаками 70 000 люкс
Естественное освещение на улице в пасмурную погоду 20 000 люкс
Магазины, супермаркеты: 750-1500 люкс
Офис или магазин: 50-500 люкс
Холлы гостиниц: 100-200 люкс
Стоянки автотранспорта, товарные склады 75-30 люкс
Сумерки 4 люкс
Хорошо освещенная автомагистраль ночью 10 люкс
Места зрителей в театре: 3-5 люкс
Больница в ночное время, глубокие сумерки 1 люкс
Полнолуние 0,1 - 0,3 люкс
Лунная ночь (четверть Луны) 0,05 люкс
Ясная безлунная ночь 0,001 люкс
Облачная безлунная ночь 0,0001 люкс

Соотношение сигнал/ шум (S/ N) определяет качество видеосигнала. Шумы на видеоизображении появляются в результате плохого освещения и выглядят как цветной или черно-белый снег или зернистость.

Параметр измеряется в децибелах. На картинке ниже довольно неплохое качество изображения показано уже при 30 Дб, но в современных камерах для получения качественного видео S/N должно быть не ниже 40 Дб.

Подавление шумов DNR (3D-DNR, 2D-DNR)

Естественно, что проблема наличия шумов в видео не осталась без внимания производителей. На данный момент существуют две технологии подавления шумов на картинке и соответствующего улучшения изображения:

  • 2-DNR. Более старая и менее совершенная технология. В основном, убираются шумы только ближнего плана, кроме того, иногда изображение из-за чистки немного смазывается.
  • 3-DNR. Новейшая технология, которая работает по сложному алгоритму и убирает не только ближние шумы, но и снег и зернистость на дальнем фоне.

Частота кадров, fps (скорость потока)

Частота кадров влияет на плавность видеоизображения - чем она выше, тем лучше. Для достижения плавной картинки необходима частота не менее 16-17 кадров в секунду. Стандарты PAL и SECAM поддерживают частоту кадров на уровне 25 к/с, а стандарт NTSC - 30 к/с. У профессиональных камер частота кадров может доходить до 120 к/с и выше.

Однако нужно учитывать, что чем выше частота кадров - тем больше места потребуется для хранения видео и тем больше будет загружен канал передачи.

Компенсация засветки (HLC, BLC, WDR, DWDR)

Распространенными проблемами видеонаблюдения являются:

  • отдельные яркие объекты, попадающие в кадр (фары, лампы, фонари), которые засвечивают часть изображения, и из-за которых невозможно рассмотреть важные детали;
  • слишком яркое освещение на заднем плане (солнечная улица за дверями помещения или за окном и тому подобное), на фоне которого ближние объекты отображаются слишком темными.

Для их решения существует несколько функций (технологий), применяемых в камерах наблюдения.

HLC - компенсация яркой засветки. Сравните:

BLC - компенсация задней засветки. Реализуется путем увеличения экспозиции всего изображения, в результате чего объекты на переднем плане становятся светлее, однако задний фон получается слишком светлым, на нем невозможно рассмотреть детали.

WDR (иногда его называют также HDR) - широкий динамический диапазон. Также используется для компенсации задней засветки, но более эффективно, чем BLC. При использовании WDR все объекты на видео имеют примерно одинаковую яркость и четкость, что позволяет в деталях рассмотреть не только передний план, но и задний. Достигается это благодаря тому, что камера делает снимки с разной экспозицией, и потом совмещает их для получения кадра с оптимальной яркостью всех объектов.

D-WDR - программная реализация широкого динамического диапазона , которая несколько хуже, чем полноценный WDR.

Классы защиты IK (Vandal-proof, антивандальные) и IP (от влаги и пыли)

Этот параметр важен, если вы выбираете камеру для наружного видеонаблюдения или в помещение с высокой влажностью, пыльностью и проч.

Классы IP - это защита от попадания внутрь посторонних предметов различного диаметра, в том числе пылевых частиц, а также защита от влаги. Классы IK - это антивандальная защита, т. е. от механического воздействия.

Самыми распространенными среди наружных камер видеонаблюдения классами защиты являются IP66, IP67 и IK10.

  • Класс защиты IP66 : камера полностью пыленепроницаема и защищена от сильных водяных струй (или морских волн). Внутрь вода попадает в незначительных количествах и не нарушает работу видеокамеры.
  • Класс защиты IP67 : камера полностью пыленепроницаема и может выдержать кратковременное полное погружение под воду или долго находиться под снегом.
  • Антивандальный класс защиты IK10 : корпус камеры выдержит попадание 5 кг груза с 40 см высоты (энергия удара 20 Дж).

Скрытые зоны (Privacy Mask)

Иногда возникает необходимость скрыть от наблюдения и записи некоторые участки, попадающие в поле зрения камеры. Чаще всего это связано с охраной неприкосновенности частной жизни. Некоторые модели камер позволяют настроить параметры нескольких таких зон, закрыв определенную часть или части изображения.

К примеру, на рисунке ниже на изображении с камеры скрыты окна соседнего дома.

Другие функции камер видеонаблюдения (DIS, AGC, AWB и др.)

OSD меню - возможность ручной настройки множества параметров камеры: экспозиции, яркости, фокусного расстояния (если есть такая опция) и т. д.

- съемка в условиях плохой освещенности без инфракрасной подсветки.

DIS - функция стабилизации изображения с камеры при съемке в условиях вибрации или движения

EXIR Technology - технология инфракрасной подсветки, разработанная Hikvision. Благодаря ей достигается большая эффективность подсветки: большая дальность при меньшем энергопотреблении, рассеивании и т. д.

AWB - автоматическая регулировка баланса белого цвета в изображении, с тем, чтобы цветопередача была как можно ближе к естественной, видимой человеческим глазом. Особенно актуальна для помещений с искусственным освещением и различными источниками света.

AGC (АРУ) - автоматическая регулировка усиления. Применяется для того, чтобы выходной видеопоток с камер всегда был стабильным, независимо от силы входного видеопотока. Чаще всего усиление видеосигнала требуется в условиях слабой освещенности, а уменьшение - наоборот, при слишком сильном освещении.

Детектор движения - благодаря этой функции камера может включаться и вести запись только при возникновении движения на объекте наблюдения, а также передавать сигнал тревоги при срабатывании детектора. Это помогает сэкономить место для хранения видео на видеорегистраторе, разгрузить канал передачи видеопотока, и организовать оповещение персонала о произошедшем нарушении.

Тревожный вход камеры - это возможность включить камеру, начать запись видео при наступлении какого-либо события: срабатывания подключенного датчика движения или другого подключенного к ней датчика.

Тревожный выход позволяет запустить реакцию на зафиксированное камерой тревожное событие, например, включить сирену, отправить оповещение по почте или SMS и т. д.

Не нашли характеристику, которую искали?

Мы постарались собрать все часто встречаемые характеристики камер для видеонаблюдения. Если вы не нашли здесь пояснение какого-то непонятного для вас параметра - напишите в комментариях, мы постараемся добавить эту информацию в статью.


сайт
Загрузка...