Компьютерный журнал для новичков и профессионалов

Первообразная от е. Вычисление интегралов. Пример определения интеграла с синусом

Решение:

Данный интеграл можно найти при помощи прямого интегрирования. Для этого найдем первообразную функции sin(x), а также воспользоваться свойством, по которому постоянную можно вынести за знак интеграла.

$$ \int 5 sin(x)dx = 5 \cdot \int sin(x)dx = 5 \cdot (-cos(x)) + C = -5cos(x) + C$$

Ответ:

$$ \int 5 sin(x)dx = -5cos(x) + C$$

  • Определите интеграл $$ \int \frac{dx}{\sqrt{5-4x^2}} $$ .

    Решение:

    Для решения данного интеграла необходимо преобразовать выражение, после чего найти первообразную. Сначала вынесем общий множитель:

    $$ \int \frac{dx}{\sqrt(5-4x^2)} = \frac{1}{2} \cdot \int \frac{dx}{\sqrt{(\frac{5}{4-x^2})}} = \frac{1}{2} \cdot \int \frac{dx}{\sqrt{ \left((\sqrt{(\frac{5}{4})})^2 -x^2 \right) }} $$

    Теперь можно использовать табличный интеграл:

    $$ \int \frac{dx}{\sqrt{(5-4x^2)}} = \frac{1}{2} \cdot arcsin \left(\sqrt{(\frac{5}{4})} \cdot x \right) + C$$

    Ответ:

    $$ \int \frac{dx}{\sqrt{5-4x^2}} = \frac{1}{2} \cdot arcsin \left(\sqrt{(\frac{5}{4})} \cdot x \right) + C $$

  • Найдите интеграл $$ \int tg xdx $$ .

    Решение:

    Чтобы найти интеграл потребуется внесение переменной под знак дифференциала:

    $$ \int tg xdx = \int sin \frac{xdx}{cos x} = - \int d cos \frac{x}{cos x} $$

    Теперь воспользуемся табличным интегралом:

    $$ - \int dcos \frac{x}{cos x} = ln |cos x| + C $$

    Ответ:

    $$ \int tg xdx = ln |cos x| + C$$

  • Найдите интеграл $$ \int(1+2sin x)^2 \cdot cos xdx $$ .

    Решение:

    Чтобы решить этот интеграл целесообразно преобразовать его, внеся одну из функций под знак дифференциала, а затем произвести замену переменной:

    $$ \int (1 + 2sin x)^2 \cdot cos xdx = \frac{1}{2} \int (1 + 2sin x)^2 d (1 + 2sin x) $$

    Произведем замену переменной 1+2sin x=t:

    $$ \frac{1}{2} \int t^2 dt = \frac{1}{2} \cdot \frac{t^3}{3} + C = \frac{t^3}{6} + C = \frac{(1 + 2sin x)^3}{6} + C$$

    Ответ:

    $$ \int(1+2sin x)^2 \cdot cos xdx = \frac{(1 + 2sin x)^3}{6} + C$$

  • Найдите интеграл $$ \int x \cdot sin x dx $$ .

    Решение:

    Чтобы найти данный интеграл, используем правила интегрирования по частям $$ \int vdu=vu- \int udv $$. Преобразуем интеграл:

    $$ \int x \cdot sin x dx = - \int x d cos x = -(x \cdot x - \int cos x dx) $$

    Сводим к табличному интегралу:

    $$ - (x \cdot cos x - \int cos x dx) = -(x \cdot cos x - sin x) + C = sin x - x \cdot cos x + C $$

    Ответ:
  • Найдите интеграл $$ \int \frac{ (x+1)dx }{ (x^2 - 3x + 2) } $$ .

    Решение:

    При интегрировании рациональной функции разбиваем ее на несколько более простых при помощи метода неопределенных коэффициентов. По теореме Виета можно определить корни знаменателя 1 и 2. Тогда функция приобретет вид:

    $$ \frac{(x+1)}{ ((x-2) \cdot (x-1)) } $$

    Применяя метод неопределенных коэффициентов, получим:

    $$ \frac{(A(x-1) + B(x-2))}{((x-2) \cdot (x-1))} = \frac{ ((A+B)x-A-2B) }{ ((x-2)\cdot(x-1)) } $$

    Составим систему уравнений:

    $$ \begin{cases} A + B = 1 \\ -A-2B = 1 \end{cases} $$

    Решая ее, получим:

    $$ \frac{(x+1)}{((x-2)\cdot (x-1))} = \frac{3}{(x-2)} - \frac{2}{(x-1)} $$

    Вернемся к интегрированию:

    $$ \int \frac{3}{(x-2)dx} - \int \frac{2}{(x-1)dx} = 3 \cdot ln |x-2| -2 \cdot ln|x-1| + C $$

    Ответ:

    $$ \int x \cdot sin x dx = sin x - x \cdot cos x + C $$

  • Найдите интеграл $$ \int tg^33xdx $$ .

    Решение:

    Чтобы найти интеграл воспользуемся тригонометрической заменой tg3x=t, тогда

    $$ x= \frac{1}{3} \cdot arctg t, \quad dx= \frac{dt}{(3(1+t²))} $$

    Произведем подстановку:

    $$ \int tg^33xdx = \int \frac{t^3 dt}{(3 \cdot (1+t^2))} = \frac{1}{3} \left(\int \frac{(t^3 + t)dt}{(1+t^2)} - \int \frac{tdt}{(1+t^2)} \right) = $$ $$ = \frac{1}{3}(\int tdt - \frac{1}{2} \cdot \int \frac{2tdt}{(1+t^2)}) = \frac{1}{3} (\frac{t^2}{2} - \frac{1}{2} \cdot \int \frac{d(1+t^2)}{(1+t^2)}) = $$ $$ = \frac{t^2}{6} - \frac{1}{6} \cdot ln|1+t^2|+C = tg^2\frac{3x}{6} - \frac{1}{6} \cdot ln|1+tg^23x| + C$$

    Ответ:

    $$ \int tg^33xdx = tg^2\frac{3x}{6} - \frac{1}{6} \cdot ln|1+tg^23x| + C $$

  • Найдите интеграл $$ \int sin^2xdx $$ .

    Решение:

    Применим тригонометрическую формулу, связанную с двойным аргументом $$ sin^2x=\frac{(1-cos 2x)}{2} $$, после чего разобьем интеграл на два более простых:

    ∫sin²xdx=1/2·∫(1-cos 2x)dx=1/2·∫dx-1/2·∫cos 2xdx=1/2·∫dx-1/4·∫cos 2xd2x=1/2·x-1/4·sin 2x+C=1/2·(x-sin 2x/2)+C $$ \int sin^2xdx = \frac{1}{2} \cdot \int(1-cos 2x)dx = \frac{1}{2} \cdot \int dx -\frac{1}{2} \int cos 2xdx =$$ $$ = \frac{1}{2} \cdot \int dx - \frac{1}{4} \cdot \int cos 2xdx = \frac{1}{2} \cdot x - \frac{1}{4} \cdot sin 2x + C = \frac{1}{2} \cdot (x - sin \frac{2x}{2}) + C $$

    Ответ:

    $$ \int sin^2xdx = \frac{1}{2} \cdot (x - sin \frac{2x}{2}) + C $$

  • Найдите интеграл $$ \int \frac{(x+1)dx}{\sqrt(3-x^2)} $$ .

    Решение:

    Сначала разложим интеграл на 2 более простых, а затем произведем замену:

    $$ \int \frac{(x+1)dx}{\sqrt{(3-x^2)}} = \int \frac{xdx}{ \sqrt{(3-x^2)} } + \int \frac{dx}{ \sqrt{(3-x^2)} } $$

    Возьмем каждый из интегралов по отдельности:

    $$ \int \frac{xdx}{ \sqrt{(3-x^2)} } = \frac{1}{2} \cdot \int \frac{dx^2}{ \sqrt{(3-x^2)} } = - \frac{1}{2} \cdot \int \frac{d(3-x^2)}{ \sqrt(3-x^2) } = - \sqrt{(3-x^2)} + C $$

    $$ \int \frac{dx}{ \sqrt{(3-x^2)} } = arcsin \frac{x}{ \sqrt{3} } +C $$

    $$ \int \frac{(x+1)dx}{\sqrt{(3-x^2)} } = arcsin \frac{x}{\sqrt{3}} - \sqrt{(3 - x^2)} + C $$

    Ответ:

    $$ \int \frac{(x+1)dx}{\sqrt(3-x^2)} = arcsin \frac{x}{\sqrt{3}} - \sqrt{(3 - x^2)} + C $$

  • Найдите интеграл $$ \int x \cdot ln^2 xdx $$ .

    Решение:

    Чтобы найти интеграл необходимо дважды применить интегрирование по частям. Получим:

    $$ \int x \cdot ln^2 xdx = \frac{1}{2} \cdot \int ln^2xdx^2 = \frac{1}{2} \cdot (ln^2 x \cdot x^2 - \int x^2d ln^2x) = \frac{1}{2} \cdot (ln^2x \cdot x^2 - \int x^2 \cdot 2 \cdot ln \frac{xdx}{x})= $$

    $$ = \frac{1}{2} \cdot (ln^2x \cdot x^2 - 2 \cdot \int x \cdot ln xdx) = \frac{1}{2} \cdot (ln^2x \cdot x \cdot x^2 - 2 \cdot \frac{1}{2} \cdot (ln x \cdot x^2 - \int xdx)) = ln^2 x \cdot \frac{x^2}{2} - \frac{x^2}{4} +C$$

    Ответ:

    $$ \int x \cdot ln^2 xdx = ln^2 x \cdot \frac{x^2}{2} - \frac{x^2}{4} +C $$

  • Интегралы онлайн на сайт для закрепления студентами и школьниками пройденного материала. Всякий раз, как только начать решать интеграл, нужно выявить его тип, без этого нельзя применять ни один метод, если не считать его табличным. Не всякий табличный интеграл виден явно из заданного примера, иногда нужно преобразовать исходную функцию, чтобы найти первообразную. На практике решение интегралов сводится к интерпретированию задачи по нахождению исходной, то есть первообразной из бесконечного семейства функций, но если заданы пределы интегрирования, то по формуле Ньютона-Лейбница остается лишь одна единственная функция, к которой нужно будет применять расчеты. Неформально интеграл онлайн является площадью между графиком функции и осью абсцисс в пределах интегрирования. Позвольте нам вычислить сложный интеграл по одной переменной и связать его ответ с дальнейшим решением задачи. Можно, что говорится, в лоб найти его от подынтегральной функции. Согласно основной теореме анализа, интегрирование является операцией, обратной дифференцированию, чем помогает решать дифференциальные уравнения. Существует несколько различных определений операции интегрирования, отличающихся в технических деталях. Однако все они совместимы, то есть любые два способа интегрирования, если их можно применить к данной функции, дадут один и тот же результат. Наиболее простым является интеграл Римана – это определенный интеграл или неопределенный интеграл. Неформально integral одной переменной можно ввести как площади под графика (фигуры, заключенной между графиком функции и осью абсцисс). Пытаясь найти эту площадь, можно рассматривать фигуры, состоящие из некоторого количества вертикальных прямоугольников, основания которых составляют вместе отрезок интегрирования и получаются при разбиении отрезка на соответствующее количество маленьких отрезков. Калькулятор решает интегралы c описанием действий подробно и бесплатно! Неопределённый интеграл онлайн для функции - это совокупность всех первообразных данной функции. Если функция определена и непрерывна на промежутке, то для нее есть первообразная функция (или семейство первообразных). Лучше тщательно подойти к этому делу и испытать внутреннее удовлетворение от проделанной работы. Но вычислить интеграл способ отличным от классического, порой приводит к неожиданным результатам и удивляться этому нельзя. Радует тот факт, который окажет положительный резонанс на происходящее. Список определенных интегралов и неопределенных интегралов с полным подробным пошаговым решением. Нахождение неопределенного интеграла онлайн является очень частой задачей в высшей математике и других технических разделах науки. Основные методы интегрирования. Задумайтесь о выполненных зданиях раньше, чем найдутся ошибки. Решение интегралов онлайн - вы получите подробное решение для разных типов интегралов: неопределённых, определённых, несобственных. Интеграл функции - аналог суммы последовательности. Неформально говоря, определённый интеграл является площадью части графика функции. Зачастую такой интеграл определяет, насколько тело тяжелее сравниваемого с ним объекта такой же плотности, и неважно, какой он формы, потому что поверхность не впитывает воду. Как найти интеграл онлайн знает каждый студент младших курсов. На базе школьной программы этот раздел математики также изучается, но не подробно, а лишь азы такой сложной и важной темы. В большинстве случаев студенты приступают к изучению интегралов с обширной теории, которой предшествуют тоже важные темы, такие как производная и предельные переходы - они же пределы. Решение интегралов постепенно начинается с самых элементарных примеров от простых функций, и завершается применением множества подходов и правил, предложенных еще в прошлом веке и даже намного раньше. Интегральное исчисление носит ознакомительный характер в лицеях и школах, то есть в средних учебных заведениях. Наш сайт сайт всегда поможет вам и решение интегралов онлайн станет для вас обыденным, а самое главное понятным занятием. На базе данного ресурса вы с легкостью сможете достичь совершенства в этом математическом разделе. Постигая шаг за шагом изучаемые правила, например, такие как интегрирование, по частям или применение метода Чебышева, вы с легкость решите на максимальное количество баллов любой тест. Так как же все-таки нам вычислить интеграл, применяя известную всем таблицу интегралов, но так, чтобы решение было правильным, корректным и с максимально возможным точным ответом? Как научиться этому и возможно ли это сделать обычному первокурснику в кратчайшие сроки? На этот вопрос ответим утвердительно - можно! При этом вы не только сможете решить любой пример, но и достигнете уровня высококлассного инженера. Секрет прост как никогда - необходимо приложить максимальное усилие, уделить необходимое количество времени на самоподготовку. К сожалению, еще никто не придумал иного способа! Но не все так облачно, как кажется на первый взгляд. Если вы обратитесь к нашему сервису сайт с данным вопросом, то мы облегчим вам жизнь, потому что наш сайт может вычислять интегралы онлайн подробно, при этом с очень высокой скоростью и безупречно точным ответом. По своей сути интеграл не определяет, как влияет отношение аргументов на устойчивость системы в целом. Механический смысл интеграла заключается во многих прикладных задачах, это и определение объема тел, и вычисление массы тела. Тройные и двойные интегралы участвуют как раз этих расчетах. Мы настаиваем на том, чтобы решение интегралов онлайн производилось только под наблюдением опытных преподавателей и через многочисленные проверки.. Нас спрашивают часто об успеваемости учеников, которые не посещают лекции, прогуливают их без причин, как же им удается найти интеграл самим. Мы отвечаем, что студенты народ свободный и вполне могут проходить обучение экстерном, готовясь к зачету или экзамену в комфортных домашних условиях. За считанные секунды наш сервис поможет каждому желающему вычислить интеграл от любой заданной функции по переменной. Проверить полученный результат следует взятием производной от первообразной функции. При этом константа от решения интеграла обращается в ноль. Это правило, очевидно, для всех. Существует не много таких сайтов, которые в считанные секунды выдают пошаговый ответ, а главное с высокой точностью и в удобном виде. Но не нужно забывать и о том, как имеется возможность найти интеграл с помощью готового сервиса, проверенного временем и испытанного на тысячах решенных примеров в режиме онлайн.

    y(x) = e x , производная которой равна самой функции.

    Экспоненту обозначают так , или .

    Число e

    Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
    е ≈ 2,718281828459045...

    Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел :
    .

    Также число e можно представить в виде ряда:
    .

    График экспоненты

    График экспоненты, y = e x .

    На графике представлена экспонента, е в степени х .
    y(x) = е х
    На графике видно, что экспонента монотонно возрастает.

    Формулы

    Основные формулы такие же, как и для показательной функции с основанием степени е .

    ;
    ;
    ;

    Выражение показательной функции с произвольным основанием степени a через экспоненту:
    .

    Частные значения

    Пусть y(x) = e x . Тогда
    .

    Свойства экспоненты

    Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

    Область определения, множество значений

    Экспонента y(x) = e x определена для всех x .
    Ее область определения:
    - ∞ < x + ∞ .
    Ее множество значений:
    0 < y < + ∞ .

    Экстремумы, возрастание, убывание

    Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

    Обратная функция

    Обратной для экспоненты является натуральный логарифм .
    ;
    .

    Производная экспоненты

    Производная е в степени х равна е в степени х :
    .
    Производная n-го порядка:
    .
    Вывод формул > > >

    Интеграл

    Комплексные числа

    Действия с комплексными числами осуществляются при помощи формулы Эйлера :
    ,
    где есть мнимая единица:
    .

    Выражения через гиперболические функции

    ; ;
    .

    Выражения через тригонометрические функции

    ; ;
    ;
    .

    Разложение в степенной ряд

    Использованная литература:
    И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

    При решении примеров этого раздела, используется формула интегрирования по частям:
    ;
    .

    Примеры интегралов, содержащих произведение многочлена и sin x, cos x или e x

    Вот примеры таких интегралов:
    , , .

    Для интегрирования подобных интегралов, многочлен обозначают через u , а оставшуюся часть - через v dx . Далее применяют формулу интегрирования по частям.

    Ниже дается подробное решение этих примеров.

    Примеры решения интегралов

    Пример с экспонентой, е в степени х

    Определить интеграл:
    .

    Решение

    Введем экспоненту под знак дифференциала:
    e - x dx = - e - x d(-x) = - d(e - x) .

    Интегрируем по частям.

    здесь
    .
    Оставшийся интеграл также интегрируем по частям.
    .
    .
    .
    Окончательно имеем:
    .

    Ответ

    Пример определения интеграла с синусом

    Вычислить интеграл:
    .

    Решение

    Введем синус под знак дифференциала:

    Интегрируем по частям.

    здесь u = x 2 , v = cos(2 x+3) , du = ( x 2 )′ dx

    Оставшийся интеграл также интегрируем по частям. Для этого вводим косинус под знак дифференциала.


    здесь u = x , v = sin(2 x+3) , du = dx

    Окончательно имеем:

    Ответ

    Пример произведения многочлена и косинуса

    Вычислить интеграл:
    .

    Решение

    Введем косинус под знак дифференциала:

    Интегрируем по частям.

    здесь u = x 2 + 3 x + 5 , v = sin 2 x , du = ( x 2 + 3 x + 5)′ dx

    Вводим синус под знак дифференциала:

    Последний интеграл интегрируем по частям

    здесь u = x , v = cos 2 x , du = dx

    Окончательно имеем.

    Нахождение неопределенного интеграла является очень частой задачей в высшей математике и других технических разделах науки. Даже решение простейших физических задач часто не обходится без вычисления нескольких простых интегралов. Поэтому со школьного возраста нас учат приемам и методам решения интегралов, приводятся многочисленные таблицы с интегралами простейших функций. Однако со временем всё это благополучно забывается, либо у нас не хватает времени на рассчеты или нам нужно найти решение неопределеленного интеграла от очень сложной функции. Для решения этих проблем для вас будет незаменим наш сервис, позволяющий безошибочно находить неопределенный интеграл онлайн .

    Решить неопределенный интеграл

    Онлайн сервис на сайт позволяет находить решение интеграла онлайн быстро, бесплатно и качественно. Вы можете заменить поиск по таблицам нужного интеграла нашим сервисом, где быстро введя нужную функции, вы получите решение неопределенного интеграла в табличном варианте. Не все математические сайты способны вычислять неопределенные интегралы функций в режиме онлайн быстро и качественно, особенно если требуется найти неопределенный интеграл от сложной функции или таких функций, которые не включены в общий курс высшей математики. Сайт сайт поможет решить интеграл онлайн и справиться с поставленной задачей. Используя онлайн решение интеграла на сайте сайт, вы всегда получите точный ответ.

    Даже если вы хотите вычислить интеграл самостоятельно, благодаря нашему сервису вам будет легко проверить свой ответ, найти допущенную ошибку или описку, либо же убедиться в безукоризненном выполнении задания. Если вы решаете задачу и вам как вспомогательное действие необходимо вычислить неопределенный интеграл, то зачем тратить время на эти действия, которые, возможно, вы уже выполняли тысячу раз? Тем более, что дополнительные расчеты интеграла могут быть причиной описки или маленькой ошибки, приведших впоследствии к неверному ответу. Просто воспользуйтесь нашими услугами и найдите неопределенный интеграл онлайн без каких-либо усилий. Для практических задач по нахождению интеграла функции онлайн этот сервер очень полезен. Необходимо ввести заданную функцию, получить онлайн решение неопределенного интеграла и сравнить ответ с вашим решением.

    Загрузка...