Компьютерный журнал для новичков и профессионалов

Скорость полета. Определение воздушной скорости полета. Приборы для измерения скорости ветра Аппарат для измерения скорости

Приборы для измерения скорости и расхода 10- 8

Приборы для измерения скорости

Для измерения местных скоростей применяются гидродинамические трубки, термоанемометры и гидрометрические вертушки.

Определение скоростей с помощью гидродинамических трубок основано на измерении скоростного напора , равного разности полного
и статического напоров в потоке. Полный напор измеряется трубкой полного напора, представляющей собой изогнутую под прямым углом трубку, обращенную своим открытым концом против потока (рисунок 4).

И

з уравнения Бернулли, записанного для 1 и 2-го сечения элементарной струйки следует

,

откуда

Рисунок 4 – Трубки полного и статического напоров

Трубка полного напора и статического напора, конструктивно объединены в одном приборе и представляют собой гидродинамическую трубку. Пито-Прандтля (рисунок 5). Приемником полного давления является отверстие 1 осевого канала цилиндра, сообщающееся через трубку полного напора 6, помещенную в державке, со штуцером 9. Для приема статического давленияна боковой поверхности цилиндра выполнены канавки 7, закрытые кожухом 4 с прорезями 3.

Рисунок 5 – Гидродинамическая трубка Пито-Прандтля со сферическим носком

Используются также гидродинамические трубки иного конструктивного оформления. Местная скорость (скорость в точке) определяется по формуле

,

где - поправочный коэффициент, определяемый путем тарирования трубки.

Гидродинамические трубки применимы для измерения скоростей более 1 м/с.

Термоэлектрические анемометры

Действие термоанемометров основано на использовании зависимости между электрическим сопротивлением проводников и их температурой. Термоанемометр представляет собой проволоку из инертного металла (платины, вольфрама, никеля), припаянную к двум электродам, закрепленным в державке (рисунок 6). Толщина проволоки 0,005-0,01 мм, длина 1-3 мм. Проволока помещается в поток и нагревается электрическим током. Поток, обтекающий проволоку, охлаждает ее, электрическое сопротивление проволоки при этом изменяется на некоторую величину в зависимости от скорости потока, фиксируя это изменение с помощью соответствующих электрических схем, можно определить величину местной скорости потока, нормальной к проволоке.

Рисунок 6 – Схема электрической цепи и тарировочная кривая

термоанемометра, работающего по методу постоянной силы тока:

- скорость потока; - напряжение тока

Гидродинамическая вертушка

Представляет собой лопастное колесо, помещенное в поток и приводимое им во вращение (рисунок 7). В процессе измерения фиксируется скорость набегающего потока. Вертушка предварительно тарируется и снабжается тарировочным графиком

Рисунок 7 – Гидрометрическая вертушка

Приборы для измерения расхода и количества жидкости

Средство измерения расхода или количества жидкости называется преобразователь расхода .

По типу измеряемой среды различают расходомеры жидкостные, газа и пара. Одна и та же модель расходомера не может использоваться для измерения разных сред – слишком различны физические параметры.

Под жидкостью понимаются любые типы капельных жидкостей (вода, мазут, нефть и др. технические жидкости)

Под газом понимается природный (метан) или технический (кислород, водород и т.п.) газ, а также сжатый воздух.

Пар может использоваться сухой насыщенный или перегретый. Для влажного пара корректное измерение расхода невозможно. Особо оговариваются максимальные давление и температура пара.

По выходному сигналу – с аналоговым, импульсным или цифровым выходом.

По принципу действия

мерные емкости (тарированный резервуар, бак)

мерные водосливы (поплавковые расходомеры)

с переменной площадью сечения – ротаметры

переменного перепада давления – диафрагмы, сопла и трубы Вентури

тахометрические

электромагнитные (индукционные)

ультразвуковые * 1

вихревые

кориолисовые

Мерные емкости

При объемном способе измерения расхода жидкости, жидкость поступает в тщательно тарированный резервуар (мерник), при этом фиксируется время наполнения определенного объема. Объемный расход равен

.

Способ измерения расхода с помощью мерного резервуара является наиболее точным. Он широко применяется в лабораторной практике для опытных исследований и поверок измерителей расхода.

Мерные водосливы

Служат для измерения расхода воды в лабораториях и на оросительных системах. Пример – треугольный водослив с тонкой стенкой в лабораторных работах.

Расходомеры переменного перепада давления

Расходомерами переменного перепада давления называются измерительные комплексы, основанные на зависимости перепада давления, создаваемого устройством, установленным в трубопроводе, от расхода жидкости или газа.

Состав комплекса:

    Первичный преобразователь расхода (гидравлические сопротивление, трубка Пито);

    первичные линии связи – соединительные трубки и вспомогательные устройства на них (отстойные сосуды, воздухосборники);

    первичный измерительный прибор – дифманометр;

    вторичные линии связи (электрические провода)

    электронный преобразователь (записывающий, показывающий)

Расходомеры переменного перепада давления

с сужающим устройством

Стандартные – диафрагма, сопло, труба Вентури –

не требуют индивидуальной градуировки.

с гидравлическим сопротивлением

например – шариковая набивка

с напорным устройством

Принцип действия основан на измерении перепада давления, возникающего при переходе кинетической энергии в потенциальную.

Пример – Трубка Пито-Прандтля или осредняющие напорные трубки, установленные поперек трубопровода

центробежные расходомеры

основаны на зависимости расхода от перепада давления, образующегося на закругленном элементе трубопровода (колене) под действием центробежных сил

Рисунок 8 – Расходомеры переменного перепада давления:

а – диафрагма; б – сопло; в – труба Вентури

Расход жидкости определяется по формуле

или

где - коэффициент расхода,

- площадь проходного сечения сужающего устройства;

- разность статических напоров,

.
- разность давлений до и после сужающего устройства

- плотность измеряемой среды (зависит от температуры и давления)

Скоростные счетчики чаще всего применяют для контроля количества воды, расходуемой в системах водоснабжения. Различают скоростные счетчики с вертикальной крыльчаткой (крыльчатые) и с винтовыми вертушками (турбинные).

Крыльчатый счетчик состоит (рисунок 9) из крыльчатки 1 и передаточного механизма 8, связанного со счетным механизмом 9. Передаточный и счетный механизм представляет собой ряд последовательно зацепленных шестерен.

Расход жидкости определяется отношением прошедшего через счетчик объема жидкости за определенное время к времени

.

Ротаметр (рисунок 10) представляет собой коническую прозрачную стеклянную трубку 1 (угол конусности от 35  до 5 о 35 //) с помещенным внутри нее поплавком 2.

Рисунок 9 – Счетчик с вертикальной крыльчаткой Рисунок 10 – Ротаметр

Ротаметр устанавливается на вертикальном участке трубопровода. Если сила, воздействующая на поплавок, превышает вес поплавка, то поплавок всплывает, увеличивая площадь щели для протекания жидкости, при этом сила, действующая на поплавок со стороны жидкости, уменьшается. Когда гидродинамическая сила становится равной весу поплавка, его всплывание прекращается.

Измерение расхода ротаметром основывается на использовании связи между расходом и положением поплавка. Характер этой связи зависит от угла конусности трубки, формы и веса поплавка, вязкости жидкости и обычно устанавливается путем индивидуального тарирования ротаметров.

Ротаметры применяют для измерения расходов жидкости и газа в широком диапазоне, начиная от малых, порядка 0,1 см 3 /с. Погрешность измерений не превышает 6 %. Недостатком их является зависимость показаний от физических свойств жидкости и невозможность измерять переменные во времени расходы.

1Прим.: Не «ультро» а «ультра» !

Для летательных аппаратов различают истинную, воздушную, приборную воздушную и путевую скорость полета.

Истинной воздушной скоростью называется скорость движения самолета относительно воздуха.

Приборной (или индикаторной) воздушной скоростью называ­ется истинная воздушная скорость, приведенная к нормальной (массовой) плотности воздуха. Эта скорость характеризует вели­чину аэродинамических сил, действующих на самолет.

Путевой скоростью называется скорость движения самолета от­носительно Земли. Она равна геометрической сумме истинной воз­душной скорости и скорости ветра.

Помимо скоростей, летчику в полете необходимы также сведе­ния и об относительной скорости полета, т. е. о числе М.

На самолетах и вертолетах имеются соответствующие датчики и указатели названных выше скоростей.

Для измерения воздушных скоростей наибольшее распростра­нение нашел аэродинамический метод, основанный на измере­нии полного и статического давления встречного потока воз­духа.

Измерение путевой скорости полета осуществляется радиотех­ническими, инерциальными и другими системами.

В качестве устройств, обеспечивающих подвод полного и стати­ческого давлений ко всем анероидно-мембранным приборам, при­меняются приемники воздушного давления (ПВД) рис. 167. Он имеет трубку 1 полного давления и полость 2 статического дав­ления. Трубка полного давления спереди открыта и устанавливает­ся по направлению полета.

Полость статического давления имеет боковые отверстия, соеди­няющие ее с атмосферой. Эти отверстия должны быть расположе-

где а - скорость звука. 6*

Градуировка шкалы измерителя истинной воздушной скорости определяется следующим выражением:

V = "I / , (2.23)

где у л - плотность воздуха на высоте Н полета.

Или при делении формулы (2.23) на (2.21) получим

V = Vnp V~Тн (2’24)

Поскольку? = , то можно вместо формулы (2.24) записать

Следовательно, истинная скорость получается из приборной скорости после внесения в нее поправок на статическое давление рн и температуру Тн на данной высоте Н полета, т. е. поправок на изменение плотности воздуха при изменении высоты полета.

Все вышеприведенные выражения учитываются при создании конструкции прибора. На рис. 168 изображена принципиальная схема измерителя приборной и воздушной скорости. При увели­чении скорости полета под действием разности давления рполн - Рст мембранная коробка 1 через тягу поворачивает стрелку 2 ука­зателя приборной скорости. Одновременно центр коробки 1 пере­мещает тягу 3 и, следовательно, стрелку 5 указателя истинной скорости.

Если увеличивается высота полета, то анероидная коробка 4 расширяется и поворачивает также тягу 3, преодолевая усилие пружины Я. При этом уменьшается длина плеча I стрелки 5, и она поворачивается па дополнительный угол, учитывающий изменение плотности воздуха.

На рис. 169 приведена конструктивная схема комбинированно­го измерителя скорости с диапазоном измерения до 2 000 км/ч (КУС-2 000). Перемещение центра манометрической коробки 6 че­рез оси, поводки 7 и 8, сектор 3 и трубку 9 передается на широкую стрелку 2 приборной скорости и одновременно через ряд повод­ков, осей и сектор 10 передается на узкую стрелку 1 истинной ско­рости. С изменением высоты по­лета изменяется положение цент­ра анероидной коробки 5, что вызывает смещение поводка 4 и изменение передаточного отно­шения между осями М и А. Ось М связана с манометрической коробкой, а ось А - со стрелкой истинной воздушной скорости.

Для учета изменения температуры воздуха с высотой полета (при этом полагают, что температура изменяется в соответствии со стандартной атмосферой) выбирают соответствующим образом ха­рактеристику анероидной коробки 5.

Скорость полета самолета измеряют относительно воздушного потока и относительно поверхности земли. Причем рассматривают как горизонтальную, так и вертикальную составляющие скорости.

Различают истинную воздушную скорость - ско­рость полета самолета относительно воздушного потока, индикаторную (приборную) скорость - скорость полета самолета относительно воздушного потока у земли при таком же динамическом давлении (скоростном напоре) как на данной высоте, и путевую скорость - скорость полета самолета относительно поверхности земли.

Безразмерной характеристикой скорости полета самолета является число М, равное отношению истинной воздушной скорости к скорости звука.

Известно несколько методов измерения скорости полета самолета: аэродинамический, доплеровский и инерциальный.

Аэродинамический метод измерения скорости полета основан на измерении динамического давления скоростного напора воздуха, функционально связанного со скоростью полета.

Доплеровский метод измерения скорости полета сводится к измерению разности частот радиосигналов излучаемого к земной поверхности и отраженного от нее.

Инерциальный метод измерения скорости основан на измерении ускорений и однократном интегрировании полученных сигналов.

Доплеровский и инерциальный методы применяются для измерения путевой скорости.

Комбинированные указатели скорости. Измерение истинной воздушной Vист и приборной (индикаторной) Vnp (V i) скоростей осуществляется анероидно-манометрическими приборами.

В основу принципа действия этих приборов положено измерение динамического давления.

При полете со скоростями, не превышающими 400 км/ч, динамическое давление р д, равное разности полного и статического р н давлений, пропорционально воздушной скорости полета V:

Р д = Р п - Р Н = ρ н V 2 ист: 2=ρ 0 V 2 0: 2

где р 0 , р н - плотности воздушной среды у земли и на высоте Н.

Приборы для измерения скорости полета называются указателями скорости. Они делятся на следующие типы:



Указатели приборной скорости;

Указатели истинной воздушной скорости.

Наряду с указателем истинной воздушной скорости применяется указатель числа М. Этот прибор показывает значение истинной воздушной скорости в относительных единицах (по отношению к скорости звука).

Указатель приборной скорости (УС) применяется в качестве пилотажного прибора.

Принцип действия его основан на измерении динамического давления встречного потока воздуха с помощью манометрической коробки, деформация которой передается на стрелку специальным механизмом.

Таким образом, указатель индикаторной скорости измеряет скоростной напор Δр = ρV 2 /2g , зависящий не только от скорости полета, но и от плотности воздуха.

Этот прибор будет показывать истинную воздушную скорость только на той высоте, на которой производилась его градуировка. Обычно указатель индикаторной скорости градуируется при нормальной плотности воздуха у --1,225 кг/м 3 , поэтому показания прибора будут соответствовать истинной воздушной скорости при полете у земли.

Аэродинамические силы, действующие на самолет в полете, также пропорциональны скоростному напору. Например, величина подъемной силы выражается формулой

Y=C y S ρV 2 /2g

Где: С у - коэффициент подъемной силы;

S - площадь несущих поверхностей.

Для поддержания требуемого режима полета важно знать не истинную воздушную скорость, а индикаторную скорость полета. Следовательно, по указателю приборной скорости легко выдерживать нужные режимы полета.

Приборы измерения скорости по существу дает информацию о подъемной силе самолета на любой высоте полета, что особенно важно знать тогда, когда подъемная сила приближается к критическому значению.

Указатель истинной воздушной скорости (ИВС) предназначен для измерения истинной воздушной скорости полета. Его принцип действия, так же как и указателя приборной скорости, основан на измерении динамического давления встречного потока воздуха. Отличие состоит в том, что в указателе ИВС измеряется также и статическое давление. В нем совмещены два прибора - указатель индикаторной скорости и указатель истинной воздушной скорости.

Прибор имеет единую шкалу и две стрелки, одна из которых (широкая) показывает приборную скорость, а другая (узкая) - истинную воздушную скорость.

Применяемые на самолетах измерители скоростей представляют собой комбинированные приборы, одновременно указывающие как истинную, так и приборную скорости полета.

Комбинированный указатель скорости типа КУС устроен следующим образом. Внутри герметического корпуса раз­мещены манометрическая 6 и анероидная 5 коробки. Внутренняя полость манометрической коробки соединена с самолетной системой полного давления, а внутренний объем корпуса прибора с

си­стемой статического давления. Внутри корпуса смонтированы механизмы истинной и приборной скоростей, которые работают от общего чувствительного элемента - манометрической коробки.

Кинематическая схема комбинированного указателя скорости:

1 - стрелка истинной воздушной скорости; 2 - стрелка приборной скорости; 3, 11 - зубчатые секторы; 4, 7, 8, 10 - поводки; 5 - анероидная коробка; 6 - манометриче­ская коробка; 9, 12 - трибки

Под действием разностного, т. е. динамического давления Р д = Р п - Р с, манометрическая коробка деформируется. Ли­нейное перемещение ее подвижного центра с помощью тяги, ocи М, поводков 7 и 8, сектора 3 и трибки 9 преобразуется в пово­ротное движение широкой стрелки 2, указывающей приборную скорость полета, т. е. скорость без учета сжимаемости воздуха и изменения его плотности на высоте полета.

Для измерения Vист необходимо учитывать изменения плотности воздушной среды. С этой целью в приборе предусмотрен специальный механизм, чувствительным элементом которого служит анероидная коробка. При изменении статического давления внутри прибора анероидная коробка деформируется.

Линейное перемещение подвижного центра при помощи тяги и оси А передается на поводок 4 и вызывает изменение передаточного отношения между осями М и А. Поскольку на ось И передается угловое перемещение, пропорциональное Vnp, а через поводок 4 - перемещение, пропорциональное изменению плотности, ее поворот прс исходит на угол, соответствующий V ист. Это перемещение с по мощью поводков 10, сектора 11 и трибки 12 преобразуется в поворотное движение узкой стрелки 1, указывающей по шкале истинную воздушную скорость V ист.

Указатель числа М.

Прибор, с помощью которого измеряется число М полета, называется указателем числа М. Существующие указатели числа М основаны на измерении отношения динамического давления Δр воздуха к статическому давлению р ст.

Число М является функцией отношения динамического давления к статическому, независимо от температуры воздуха.

Для указателя числа М нужна схема, аналогичная схеме указателя истинной воздушной скорости, но без элемента, учитывающего температуру воздуха.

Классификация скоростей полета.

В аэронавигации различают воздушную и путевую скорости полета.

Воздушная скорость (V) - этоскорость полета ВС относительно воздушной среды. В свою очередь, воздушная скорость подразделяется на:

- приборную (Vпр) – это скорость, которую показывает указатель скорости (УС - 350; УС - 450);

- индикаторную (Vинд) – это приборная скорость, исправленная на величину инструментальной поправки данного указателя скорости;

- истинную (Vи) – это действительная скорость движения воздушного судна, относительно воздушной массы.

Скорость полета является векторной величиной. Для ее определения необходимо знать и модуль, и направление. В общем случае вектор воздушной скорости не совпадает с продольной осью ВС, а несколько отклонен от нее под влиянием угла атаки и угла скольжения ВС.

Это отклонение незначительно и не оказывает существенного влияния на точность решения навигационных задач, поэтому в аэронавигации принято считать, что вектор воздушной скорости совпадает с продольной осью ВС и лежит в горизонтальной плоскости.

Общий принцип измерения воздушной скорости основан на измерении скоростного напора воздуха q. Под скоростным напором понимают разность полного и статического давлений, воспринимаемых приемником воздушных давлений (ПВД) при полете ВС. Скоростной напор q = V 2 /2. Из формулы видно, что он зависит от плотности воздуха на высоте полета и квадрата скорости. По замеренному скоростному потоку можно определить воздушную скорость.

V

Рис. 4. Воздушная скорость полета.

На воздушных судах применяются указатели воздушной скорости двух типов:

Указатель скорости типа УС (УС-250, УС-350);

Комбинированный указатель скорости типа КУС (КУС-730/1100,
КУС-1200 и др.).

Указатели типа УС имеют одну стрелку, указывающую приборную скорость. Указатели типа КУС имеют две стрелки, указывающие приборную и истинную воздушные скорости полета.

Воздушная скорость не зависит от направления и скорости ветра.



Воздушная скорость зависит от летно-технических характеристик ВС и режима работы силовой установки.

Путевая скорость (W) - скорость полета ВС относительно земли. Она зависит от воздушной скорости (V), скорости (U) и направления ветра (δн).

Путевая скорость является результирующей векторного сложения вектора воздушной истинной скорости (V) и вектора ветра (U).

V U

W

Рис. 5. Путевая скорость полета.

5. Погрешности указателя скорости, их учет.

Определение воздушной истинной скорости полета.

Указателю скорости присущи инструментальные, аэродинамические и методические погрешности.

Инструментальные погрешности (ΔVи) . Это погрешности, которые возникают по тем же причинам, что и аналогичные погрешности барометрического высотомера (погрешности оцифровки шкалы, трения в передаточном механизме и т.д.). Они определяются в лабораторных условиях и по результатам проверки составляются таблицы инструментальных поправок, которые помещаются в кабине пилотов.

Аэродинамические погрешности ( Vа ). Это погрешности, которые возникают в результате неточного измерения полного и особенно статического давления в зоне установки ПВД. Они определяются при летных испытаниях ВС и указываются в РЛЭ для каждого типа ВС.

Методические погрешности (ΔVм)Это погрешности, которые возникают вследствие несовпадения фактических условий атмосферы со стандартными условиями, положенными в основу тарировки шкалы указателя скорости. Эти погрешности подразделяются на две группы:

Погрешности от изменения плотности воздуха;

Погрешности от изменения сжимаемости воздуха.

а). Погрешности от изменения плотности воздуха возникают вследствие несовпадения стандартной массовой плотности воздуха на уровне моря

0.125 кгс/м, которая положена в основу тарировки шкалы указателя скорости, с плотностью воздуха на высоте полета.

По мере увеличения высоты, плотность воздуха уменьшается, поэтому показания указателя скорости будут меньше истинной воздушной скорости. В практике методическая поправка на изменение плотности воздуха учитывается с помощью НЛ или расчетом в уме.

б). Погрешности в следствии сжимаемости воздуха возникают
из-за изменения сжимаемости воздуха на высоте полета относительно сжимаемости воздуха на уровне моря, принятой при тарировке шкалы указателя скорости.

На малых скоростях и высотах сжимаемость воздуха незначительна. С увеличением скорости и высоты полета сжимаемость возрастает, что приводит к увеличению плотности воздуха, а следовательно, и скоростного напора, вызывающего завышение показаний указателя скорости.

При расчете истинной воздушной скорости поправку на изменение сжимаемости воздуха алгебраически прибавляют к приборной скорости, а при определении приборной скорости - наоборот.

При скоростях полета до 400 км/ч и высотах до 3000 м поправка на изменение сжимаемости воздуха незначительна и ею можно пренебречь.



Спидометры

Спидометр информирует водителя о скорости движения автомобиля и пройденном пути, и объединяет два измерительных устройства - указатель скорости и счетчик пройденного пути, называемый одометром.
Спидометр является важным контрольно-измерительным прибором, поскольку информирует водителя о безопасном режиме движения, поэтому эксплуатация автомобиля с неисправным спидометром запрещается правилами дорожного движения.

Считается, что спидометр (от английского «speed» - скорость) изобрел в 1801 году наш соотечественник - крепостной механик-самоучка Егор Кузнецов. Он приспособил к конному экипажу счётчик собственной конструкции, позволяющий не только подсчитывать число пройденных саженей и вёрст, но и скорость движения.
Диковинка, которую назвали «верстометром» была показана императору Александру I и некоторое время забавляла придворных.
Затем, как это часто бывало в России, «верстометр» был надолго забыт.
И лишь спустя две сотни лет сотрудники Санкт-Петербургского Эрмитажа обнаружили это уникальное устройство в одном из хранилищ знаменитого музея. Его удалось реставрировать и выставить в музейной экспозиции.

На автомобиль первый прибор для измерения скорости был установлен в 1901 году. Вплоть до 1910 года спидометр считался диковинной вещью и устанавливался в качестве необязательной опции, лишь спустя годы автозаводы стали включать его в обязательную комплектацию автомобилей.
Конструкция спидометра, изобретенная в 1916 году Николой Тесла, дошла до нынешних дней, практически не претерпев изменений.

В качестве привода спидометров используется электропривод или гибкий вал (механический привод, который обычно называют «тросиком спидометра»). Тип привода спидометра зависит от удаленности прибора и места его присоединения к трансмиссии автомобиля.

Гибкие валы для привода рекомендуют устанавливать, если длина трассы не превышает 3,55 метра . При большей длине трассы рекомендуется электропривод.
Привод спидометра осуществляется от ведомого вала коробки передач или раздаточной коробки. Для этого в узле, от которого осуществляется привод, устанавливается редуктор, передаточное число которого выбирают в зависимости от передаточного числа главной передачи и радиуса качения колеса автомобиля.
Редуктор соединяют со спидометром либо механическим путем (гибким валом), либо электрическим (посредством специального датчика). Сигнал с редуктора (или приводимого от редуктора датчика) поступает на спидометр, где преобразуется в соответствующую информацию.

Дополнительную информацию об автомобильных спидометрах и их приводах можно получить .

Спидометры с механическим приводом (от гибкого вала)

Все спидометры с приводом от гибкого вала имеют одинаковый принцип действия и отличаются лишь особенностями исполнения скоростного и счетного узлов и внешним оформлением.

На рис. 1 приведен спидометр с механическим приводом (от гибкого вала), который приводится в действие от входного валика 1 с гнездом квадратного сечения, в которое вставляется квадратный наконечник гибкого вала. На другом конце входного валика закреплены постоянный магнит 5 и термокомпенсационная шайба (магнитопровод) 4 . Магнит 5 намагничен так, что его полюсы направлены к краям диска.


Рис. 1 . Спидометр с приводом от гибкого вала: 1 - входной валик; 2 - фетровый фитиль; 3 - заглушка; 4 - шайба; 5 - магнит; 6 - катушка; 7 - экран; 8 - ось; 9 - рычажок; 10 - спиральная пружина; 11 - стрелка; 12, 13 - валики

На оси 8 , свободно вращающейся в двух подшипниках, с одной стороны закреплена стрелка 11 , а с другой – катушка 6 . Катушка чаще всего выполняется в виде чаши, которая с некоторым зазором охватывает магнит 5 . Катушка изготовляется из немагнитного материала, например из алюминия. Снаружи катушка 6 закрыта экраном 7 из магнитомягкого материала, который концентрирует магнитное поле магнита 5 в зоне катушки.
Со стороны стрелки к оси 8 одним концом прикреплена спиральная пружина 10 . Другой конец пружины прикреплен к рычажку 9 , поворотом которого можно регулировать натяжение спиральной пружины.

При движении автомобиля от гибкого вала приводится во вращение входной валик 1 и вместе с ним магнит 5 . При этом его магнитный поток, пронизывая катушку 6 , наводит в ней вихревые токи, которые вызывают образование магнитного поля катушки.
Два магнитных поля (магнита и катушки) взаимодействуют между собой таким образом, что на катушку действует крутящий момент, направление которого противоположно моменту, создаваемому пружиной. В результате катушка вместе с осью и стрелкой повернется на угол, при котором возрастающий момент сил упругости пружины станет равным моменту магнитных сил, действующих на катушку.
Так как крутящий момент катушки пропорционален скорости вращения магнита, а, следовательно, и скорости движения автомобиля, угол поворота катушки и стрелки с увеличением скорости возрастают.

Термокомпенсационная шайба 4 , установленная вместе с магнитом 5 , нейтрализует влияние изменения температуры окружающей среды на сопротивление катушки. Увеличение сопротивления катушки приводит к уменьшению наводимых в ней токов и вызываемого ими магнитного потока. Шайба 4 при этом обеспечивает увеличение магнитного потока, пронизывающего катушку путем изменения магнитной проницаемости.

Валик 1 большинства спидометров снабжен масленкой, установленной в хвостовой части спидометра. Она состоит из заглушки 3 с отверстием, и расположенным под ней фетровым фитилем 2 , который пропитан маслом и смазывает валик.

Привод счетного узла осуществляется от входного валика 1 через валики 12 и 13 посредством трех понижающих червячных передач, соединенных последовательно. Червячные передачи обеспечивают передаточное отношение 624 или 1000 .

По конструкции счетные узлы бывают с внешним и внутренним зацеплением счетных барабанчиков. Обычно счетный узел содержит шесть барабанчиков, которые свободно насажены на одной оси.
При внешнем зацеплении (рис. 2 ) каждый барабанчик 7 с одной стороны имеет 20 зубцов 4 , находящихся в постоянном зацеплении с зубцами трибок 8 , также свободно вращающихся на своей оси.
Со стороны, противоположной зубчатой, барабанчики, кроме крайнего левого, имеют два зубца 5 с впадиной между ними. Каждая трибка имеет шесть зубцов. Три зубца трибки со стороны двух зубцов 5 барабанчиков укорочены по ширине через один.


Рис. 2 . Счетный узел с внешним зацеплением: 1, 3 - длинные зубья трибки; 2 - укороченный по ширине зубец трибки; 4 - зубцы барабанчика; 5 - два зубца барабанчика; 6 - выемка, укорачивающая зубец трибки; 7 - барабанчик; 8 - трибка

Крайний правый барабанчик постоянно приводится во вращение червячной передачей. Когда два зубца 5 подходят к укороченному зубцу трибки, они захватывают его и поворачивают на 1/3 оборота. При этом следующий барабанчик поворачивается на 1/10 оборота.
Повернувшаяся трибка после поворота устанавливается так, что при следующем проходе зубцов 5 они опять захватят укороченный зубец.
Остановиться в другом положении трибка не может, так как этому мешают длинные зубцы, скользящие по цилиндрической части барабанчика.

Таким образом обеспечивается поворот каждого барабанчика на 1/10 при полном повороте предыдущего. При такой конструкции через каждые 100 тыс. оборотов начального (правого) барабанчика, полный оборот которого соответствует 1 км пробега автомобиля, все барабанчики возвращаются в исходное положение, и отсчет показаний начинается с нуля.

На рис. 2 приведено устройство спидометра 16.3802, устанавливаемого на автомобили марки УАЗ. Спидометр 16.3802 механический, с приводом с помощью гибкого вала от раздаточной коробки. Состоит из стрелочного указателя скорости движения автомобиля и суммарного счетчика пройденного пути. Оснащен индикатором включения дальнего света фар.


Рис. 2 . Спидометр автомобиля УАЗ: 1 - приводной валик; 2 - фильц с запасом смазки; 3 - отверстие для смазки; 4 - постоянный магнит; 5 - катушка; 6 - возвратная пружина стрелки; 7 - регулировочная пластина натяжения пружины; 8 - подшипник оси стрелки; 9 - кронштейн барабанчиков; 10 - стрелка; 11 - ось стрелки; 12 - ось барабанчиков; 13 - шестерня счетного барабанчика; 14 - корпус механизма; 15 - промежуточный червячный валик; 16 - горизонтальный червячный валик; 17 - экран; 18 - стойка стрелки; 19 - кронштейн трибки; 20 - трибка; 21 - счетный барабанчик; 22 - запорная пластина

Основные характеристики спидометра 16.3802:

  • Диапазон показаний скорости, км/ч: 0-120 ;
  • Цена деления, км/ч: 5 ;
  • Емкость счетчика пройденного пути, км: 99999,9 ;
  • Число оборотов приводного вала, соответствующее 1 км пробега: 624 ;
  • Посадочный диаметр кожуха (мм ): 100 ;
  • Присоединительные размеры с гибким валом, мм: М18×1,5 квадрат 2,67 ;
  • Масса, кг: 0,54 .

Спидометры с электроприводом

Спидометры с электроприводом имеют такие же магнитоиндукционный и счетный узлы, как и спидометры с механическим приводом.
Электропривод спидометра состоит из датчика, который устанавливается на коробке передач, электродвигателя, вращающего приводной валик магнитоиндукционного узла указателя и устройства электронного управления электродвигателем. Электродвигатель и устройство управления смонтированы в одном корпусе с магнитоиндукционным узлом.


Датчик электропривода представляет собой трехфазный генератор переменного тока, ротором которого служит постоянны четырехполюсный магнит. Как и гибкий вал, ротор датчика приводится во вращение от ведомого вала коробки передач.
При вращении ротора в каждой фазе статора, соединенного «звездой» (рис. 4 ), вырабатывается переменная синусоидальная ЭДС, частота которой пропорциональна частоте вращения вала КПП, а значит, и скорости движения автомобиля. Сигнал каждой фазы статора управляет транзисторами VT1, VT2 и VT3 , работающих в режиме электрического ключа.

Цепи коллектор-эмиттер транзисторов включены в цепи фазных обмоток трехфазного синхронного двигателя. Ротором электродвигателя служит четырехполюсный постоянный магнит. Когда с фазной обмотки датчика на базу соответствующего транзистора поступает положительная полуволна ЭДС, он открывается, и по соответствующей фазной обмотке электродвигателя будет протекать ток.
Так как фазные обмотки датчика сдвинуты на 120 ˚, то открытие транзисторов будет также сдвинуто во времени. Поэтому магнитное поле статора электродвигателя, создаваемое его обмотками, сдвинутыми также на 120 ˚, будет вращаться с частотой вращения ротора датчика.
Вращающееся магнитное поле статора, воздействуя на постоянный магнит ротора, приводит его во вращение с той же частотой.
Резисторы R1 – R6 в схеме электронного ключа улучшают условия переключения транзисторов.



Тахометры

Приборы, измеряющие частоту вращения коленчатого вала, делятся на тахометры , фиксирующие число оборотов в минуту в данный момент, и тахоскопы – счетчики, показывающие число оборотов вала за определенный момент времени. Тахоскопы используются при испытаниях двигателей после капитального ремонта, и на автомобилях не устанавливаются.

Тахометры применяются на автомобилях, если есть необходимость в контроле частоты вращения коленчатого вала двигателя. По принципу действия манометры бывают центробежные, электрические, электронные (импульсные), магнитные (индукционные), стобоскопические и др. На автомобилях наиболее широкое применение получили электрические тахометры, обеспечивающие дистанционное измерение частоты вращения коленчатого вала.

На дизелях привод тахометра осуществляется от распределительного вала двигателя с помощью гибкого вала или электропривода. Тахометры магнитоиндукционного типа, устанавливаемые для контроля частоты вращения коленчатого вала дизеля, имеют электропривод. Их конструкция аналогична конструкции спидометра с электроприводом. Отличаются они отсутствием счетного узла.

На карбюраторных двигателях для контроля частоты вращения коленчатого вала обычно устанавливаются электронные тахометры, принцип действия которых основан на измерении частоты импульсов, возникающих в первичной цепи системы зажигания при размыкании первичной цепи.

Схема электронного тахометра (рис. 5 ) обеспечивает измерения частоты прерывания тока в первичной цепи системы зажигания.


Рис. 5 . Схема электронного тахометра

Состоит схема из трех узлов: узла формирования запускающих импульсов, узла формирования измерительных импульсов и стрелочного магнитоэлектрического прибора.
На вход тахометра поступает входной сигнал I из первичной цепи системы зажигания. Узел формирования запускающих импульсов, состоящий из резисторов R1, R2 , конденсаторов С1, С2, С3, С4 и стабилитрона VD1 , выделяет из имеющего форму затухающей синусоиды сигнала I сигнал II , имеющий форму одиночного импульса, который поступает на базу транзистора VT1 узла формирования измерительных импульсов.

В исходном состоянии транзистор VT2 открыт, так как через резисторы R11, R10 и R5 по нему протекает ток базы, а конденсатор С5 заряжен.
Транзистор VT1 в это время закрыт, так как потенциал его эмиттера, вызванный значительным падением напряжения на резисторе R5 , больше потенциала базы.
Когда положительный импульс II поступает на базу транзистора VT1 , он открывается. Конденсатор С5 разряжается через открытый транзистор VT1 , создавая на базе транзистора VT2 отрицательное смещение, которое его запирает.

Транзистор VT1 поддерживается открытым током базы, протекающим через резисторы R11, R9, R8 и R5 . Открытый транзистор VT1 обеспечивает протекание тока по измерительному прибору через резисторы R11, R7, R3 и R5 .
Длительность импульса III тока, протекающего по измерительному прибору, определяется временем разряда конденсатора С5 .
После разряда конденсатора С5 транзистор VT2 открывается, так как исчезает отрицательное смещение на его базе, а транзистор VT1 закрывается.

Частота импульсов III тока равна частоте размыканий первичной цепи системы зажигания. Эффективное значение импульсов тока I эф , пропорциональное их частоте, показывает прибор.

Переменным резистором R7 при настройке регулируют амлитуду импульсного тока.
Терморезистор R3 компенсирует температурную погрешность прибора.
Диод VD2 служит для защиты транзистора VT1 .
Стабилитрон VD3 обеспечивает стабилизацию напряжения питания прибора.


Загрузка...