Компьютерный журнал для новичков и профессионалов

Структура оперативной памяти. Оперативная память компьютера (ОЗУ, RAM) Ячейка оперативной памяти

Итак, оперативная память компьютера, которая еще называется энергозависимой. Она же - DRAM (Dynamic Random Access Memory) - динамическая память с произвольным доступом или оперативное запоминающее устройство, сокращенно - ОЗУ.

Давайте разберемся почему же она именно так называется? Во время работы компьютера в оперативной памяти хранятся все данные и программы, запущенные во время работы пользователем. Слово «энергозависимая» в отношении памяти означает лишь то, что при выключении питания системного блока (завершения работы) оперативная память компьютера обнуляется. Исчезает все ее содержимое.

Есть еще энергонезависимая память - это жесткий диск Вашего компьютера, ведь данные на нем сохраняются даже после выключения питания.

«Динамическая память с произвольным доступом»: доступ (обращение) к разным ее ячейкам происходит в произвольном порядке и в разные моменты времени, отсюда и определение. А вот со словом «динамическая» ситуация более сложная. Давайте разбираться!

Наименьшей единицей структуры оперативной памяти компьютера является ячейка. Массив близко расположенных ячеек объединяется в условные прямоугольные таблицы, которые называются матрицами. Горизонтальные линейки такой матрицы называют строками, а вертикальные столбцами. Весь прямоугольник матрицы носит название «страница», а совокупность страниц называется банком. Все эти вещи немного виртуальны, в том смысле, что, к примеру, «банком» может называться как целый модуль DIMM, так и отдельная его часть (микросхемы памяти, расположенные с одной его стороны).

В любом случае, схему строения оперативной памяти компьютера (ее фрагмента) можно видеть на картинке ниже:

Как мы уже говорили, наименьшей единицей на физическом уровне является ячейка. Ячейка состоит из одного микро-конденсатора (на схеме выше обозначен как С) и трех транзисторов (VT). Конденсатор хранит небольшой заряд, а транзисторы выступают в роли «ключей», которые, с одной стороны, не дают заряду конденсатора самопроизвольно стечь, а с другой, - разрешают/запрещают доступ к конденсатору на чтение или изменение.

Каждый конденсатор может хранить наименьшую единицу информации - один бит данных. Если конденсатор заряжен, то, согласно двоичной системе счисления, применяющейся в компьютерах, - это логическая «единица», если заряда нет - логический «ноль» и данных нет.

В теории схема организации работы оперативной памяти выглядит красиво, но идеальных решений нет и на практике разработчикам приходится сталкиваться с тем, что заряд из конденсатора достаточно быстро уходит или происходит его частичная самопроизвольная разрядка (не спасают положение и «ключи»), поэтому не остается иного выхода, как периодически подзаряжать его. Насколько часто? Несколько десятков раз в секунду! И это при том, что таких конденсаторов в одном чипе памяти - несколько миллионов!

В итоге, состояние всей памяти должно постоянно считываться и за небольшой промежуток времени снова обновляться (в противном случае все ее данные просто исчезнут). Вот именно поэтому она получила название «динамическая», имелось в виду ее динамическое автоматическое обновление или регенерация. На фото выше мы можем видеть специальные ее блоки, которые отвечают за эту функцию.

Также нужно учитывать то, что процесс считывания в DRAM деструктивен: после обращения к любой ячейке ее конденсатор разряжается и чтобы не потерять содержащиеся в ней данные конденсатор нужно снова зарядить. Второй «сюрприз» состоит в том, что, в силу конструктивных особенностей, дешифратор адреса строки/столбца отдает команду на считывание не одной конкретной ячейки, а сразу всей строки (или столбца). Считанные данные полностью сохраняются в буфере данных и потом из них уже отбираются запрашиваемые приложением. После этого сразу же нужно перезарядить целый ряд ячеек!

Хоть и может показаться, что процесс регенерации (обновления) носит несколько хаотичный характер, но это не так. Контроллер оперативной памяти через равные промежутки времени берет строго регламентированную технологическую паузу и в это время проводит полный цикл регенерации всех данных.

Когда-то я прочитал хорошую фразу: «Динамическую память можно сравнить с дырявым ведром. Если его постоянно не пополнять, то вся вода вытечет!» Что-то условно похожее и происходит в ситуации с DRAM. Естественно, все эти дополнительные команды и циклы зарядки-разрядки приводят к дополнительным задержкам в работе и не являются признаком высокого КПД конечного изделия. Так почему нельзя придумать что-то более эффективное? Можно! И оно уже придумано - статическая память с произвольным доступом (SRAM - Static Random Access Memory).

Статическая память работает намного быстрее динамической посредством переключения триггеров и не нуждается в регенерации. Она с успехом применяется при построении кешей центрального процессора и в кадровых буферах дискретных видеокарт . Можно ли организовать на базе SRAM основную системную память компьютера? Можно, но из-за усложнения конструкции она будет стоить намного дороже и производителям это просто не выгодно:)

Думаю, логично, если рассматривать мы будем оперативную память типа DIMM. Аббревиатура расшифровывается как «Dual In-Line Memory Module» (двухсторонний модуль памяти), а именно такие платы до сегодняшнего дня и используются в персональных компьютерах.

Память стандарта DIMM в конце 90-х годов прошлого века пришла на смену предыдущему стандарту SIMM (Single In-Line Memory Module - односторонний модуль памяти). Фактически, модуль DIMM представляет собой печатную плату с нанесенными на нее контактными площадками. Это - своеобразная основа: чипы памяти и прочая электрическая «обвязка» производителем добавляются уже потом.

Принципиальное отличие DIMM от SIMM, кроме размеров, состоит в том, что в новом стандарте электрически контакты на модуле расположены с двух сторон и являются независимыми, а в SIMM они расположены только с одной его стороны (встречаются и с двух, но там они просто закольцованы и передают, по сути, один и тот же сигнал). Стандарт DIMM способен также реализовывать такую функцию, как обнаружение и исправление ошибок с контролем четности (ECC), но об этом ниже.

Оперативная память компьютера это то место, где центральный процессор сохраняет все промежуточные результаты своих вычислений и работы, забирая их обратно по необходимости для дальнейшей обработки. Можно сказать, что RAM - это рабочая область для центрального процессора компьютера.

Услугами оперативной памяти также с удовольствием пользуются и видеокарты (если им не хватает для размещения данных объема своей). Встроенное видео собственной вообще не имеет и без зазрения пользуется оперативной.

Давайте посмотрим на то, как выглядят обычные модули DIMM:

Оперативная память компьютера - многослойная пластина текстолита (на фото - зеленая и красная соответственно). Печатная плата (PCB - printed circuit board) - это основа с нанесенными на ней печатным способом элементами. Впаянное в нее определенное количество микросхем памяти (на фото - по четыре с каждой стороны) и разъем подключения, который вставляется в соответствующий слот на материнской плате .

Разъем модуля, фактически, определяет тип нашей DRAM (SDRAM, DDR, DDR2, DDR3 и т.д.). Присмотритесь повнимательней и Вы увидите, что на фотографии разъем разделен пополам небольшим разрезом (его называют «ключ»). Именно этот «ключ» не позволяет вставить модуль памяти в несовместимый с ней разъем на материнской плате. Важно: «ключи» на модуле и на плате должны совпадать идеально. Это защита от неправильной установки в плату.

На схеме ниже представлено расположение «ключей» для разных типов модулей:

Как видите, длина у всех модулей одинаковая. Внешне разница только в количестве контактных площадок на разъеме и расположении «ключей».

Теперь коротко рассмотрим самые распространенные типы оперативной памяти. Разные ее поколения:

  • SDRAM - (Synchronous Dynamic Random Access Memory - синхронная динамическая память с произвольным доступом). Модуль с 168-мю пинами (контактами), питающийся от напряжения 3,3 Вольта (V).
  • DDR - (Double Data Rate - удвоенная скорость передачи данных). Позволяет (в отличие от SDRAM) делать выборку (или передавать данные) дважды за один такт шины памяти. Модуль имеет 184 контакта, его питающее напряжение - 2,6 V. С появлением памяти стандарта DDR предыдущее поколение памяти стали называть SDR SDRAM (Single Data Rate DRAM).
  • DDR2 - следующее поколение чипов. Она позволяет за один такт передавать уже 4 бита информации (два набора данных) из ячеек микросхем памяти в буферы ввода-вывода. Печатная плата с 240-ка контактами (по 120 с каждой стороны). Ее напряжение питания - 1,8 В.
  • DDR3 - следующее поколение, способное за один такт делать выборку 8-ми бит данных, 240 контактов и питающее напряжение в 1,5 Вольта. При этом энергопотребление памяти DDR3 на 40% меньше, чем у DDR2, что достаточно важно при ее использовании с мобильных устройствах (ноутбуках). Снижение энергопотребления достигается за счет перехода на более «тонкий» техпроцесс (90-65-50-40 нанометров).
  • DDR4 - появилась на рынке в 2014-ом году. Эволюция DDR3 (пониженное напряжение (1.2V), чуть больше контактов - 288, чуть выше модуль, скорость передачи удвоена за счет двойного количества самих чипов памяти). Скорость передачи данных до 3.2 Гигабита в секунду. Максимальная частота работы памяти данного типа - 4 266 МГц

Итак, признаками, которые характеризуют оперативную память компьютера можно считать следующие:

  1. Тип ОЗУ (SDRam, DDR и т.д.)
  2. Объем модулей
  3. Тактовая частота их работы
  4. Тайминги (задержки при доступе и выборке данных из чипов - латентность)

Пункт первый мы рассматривали выше, а вот по остальным давайте пройдемся. Объем микросхем памяти сейчас постоянно увеличивается и сейчас модулем в 1 Gb (гигабайт) уже никого не удивишь. А раньше я хорошо помню, какой благоговейный трепет вызывала во мне фраза: «У меня на работе на компьютере установлено 128 мегабайт RAM!» Причем знакомый на тот момент работал с трехмерной графикой в программе моделирования «3DMax»:) Сейчас есть модули по 16 гигабайт каждый и я уверен, что это не предел.

Идем дальше: тактовая частота. Измеряется в мегагерцах (МГц - MHz) и общим правилом является то, что чем она больше, тем память работает быстрее. Например, память DDR4 работает на частоте 4266 Мегагерц. При более высокой частоте возрастает и пропускная способность оперативной памяти (то, сколько данных она может «прокачать» через себя за единицу времени).

Вот небольшая сводная таблица, наглядно показывающая этот момент:

Тайминги (латентность) - это показатель временной задержки между поступлением в память команды и временем ее выполнения. Латентность определяется таймингами, измеряемыми в количестве тактов между отдельными командами. Настройка таймингов происходит в биосе и изменением их значений можно добиться определенного прироста производительности работы компьютера.

Пользуясь случаем, хотелось бы добавить небольшую ремарку по поводу всех этих «новых» типов памяти: DDR2, 3, 4 и т.д. Грубо говоря, это все тот же старый добрый SDRAM модуль, но немного переделанный. Поскольку увеличивать частоту работы самой памяти накладно (никто не любит заниматься этим из-за неизбежного нагрева, возникающего после этого), производители пошли на хитрость.

Вместо существенного увеличения тактовой частоты самой памяти, они увеличили разрядность внутренней шины данных (от ячеек матриц памяти до буферов ввода-вывода) и сделали ее в два раза большей, чем разрядность внешней шины (от контроллера до микросхем памяти). Получилось, что за один такт считывается столько данных, сколько раньше считывалось по внешней шине только за два такта. При этом, ширина внешней шины данных составляет, как и раньше, 64 бита, а внутренней - 128/256/512 и т.д. бит.

Еще одной «уловкой», позволяющей поднять быстродействие без увеличения частоты является параллельная установка модулей для включения двух и трехканального режимов работы (double и triple-channel соответственно). Это еще немного увеличивает быстродействие подсистемы памяти (5-10 процентов). Для работы в таком режиме предпочтительно использовать Kit-ы. «KIT» - это набор модулей, состоящий из нескольких «планок», которые уже протестированы для кооперативной работы друг с другом.

На современных материнских платах слоты (разъемы) для памяти через один выделены разными цветами. Это сделано именно для облегчения установки в них похожих (в идеале - одинаковых) модулей. Если установка прошла успешно, режим мультиканальности включится автоматически. На фото ниже представлены платы с возможностью работы оперативной памяти в трех и четырехканальном режимах.

А вот так могут выглядеть на плате четыре канала оперативной памяти (quad-channel) :

Сейчас мультиканальные режимы памяти используются достаточно широко. Идея состоит в следующем: двухканальный контроллер памяти может обращаться одновременно (параллельно) к каждому четному и нечетному модулю. Например: первый и третий модуль передают и принимают данные одновременно со вторым и четвертым. При традиционном подходе (одноканальный режим) все установленные модули обслуживались одним контроллером (каналом), которому приходилось быстро переключаться между ними.

Общая скорость каждого канала определяется самым медленным модулем DIMM, который в нем установлен. Также старайтесь придерживаться рекомендации, гласящей: в каждый из каналов нужно устанавливать планки одинакового объема.

Сейчас несколько слов о микросхемах оперативной памяти (чипах). Как и любой элемент компьютера на который подается напряжение, память греется. Как мы помним, комплектующие внутри системного блока подпитываются определенным количеством постоянного тока, которое им отдает блок питания - 12V, 5V или 3 Вольта.

Греются непосредственно сами микросхемы. И некоторые производители плат ставят на свои изделия небольшие радиаторы для отвода тепла. Радиаторы, как правило, просто приклеиваются с помощью специального состава или держатся на термопасте .

Радиатор также может защелкиваться сверху:

Вот, к примеру, какой образец оперативной памяти компьютера от брендовой компании «OCZ» находится в моей домашней коллекции:

Вещь! Двойной радиатор, плата приятно тяжелит ладонь и вообще производит впечатление предмета, сделанного на совесть. Плюс - пониженные тайминги работы:)

Помню в 2008-ом году я некоторое время работал на одной крупной фирме. Компьютеризировано там было все достаточно серьезно. В IT отделе там работали, в хорошем смысле этого слова, настоящие «маньяки» своего дела:) Когда я впервые посмотрел на вкладку свойств тамошнего терминального сервера, который работал под управлением 64-х разрядной ОС Windows Server 2003, я мягко говоря, очень удивился. Я увидел цифру в 128 (сто двадцать восемь) гигабайт оперативной памяти! Понимая, что выгляжу глупо, я все таки решил переспросить, так ли это? Оказалось, что так оно и есть на самом деле (128 гигабайт DRAM). Жаль, что мне тогда не удалось взглянуть на ту материнскую плату:)

Продолжаем! Чипы памяти могут быль расположены как с одной стороны печатной платы текстолита, так и с обеих и быть разной формы (прямоугольные или квадратные), установленные как планарные SMD или же BGA компоненты. Высота самого модуля также может быть разной. Каждый из чипов оперативной памяти имеет определенную емкость, измеряемую в мегабайтах (сейчас - в гигабайтах).

Например, если у нас планка имеет объем в 256 мегабайт и состоит из 8-ми чипов то (делим 256 на 8) и получаем, что в каждой микросхеме содержится по 32 мегабайта.

Не могу обойти вниманием особый класс памяти - серверную DRAM. На фото ниже представлены несколько модулей: первый и третий - серверные варианты (можете нажать на фото для увеличения).

Чем же серверная память отличается от обычной? Даже визуально на фото выше видно, что решения для серверов имеют дополнительные чипы на плате, которые обеспечивают ей дополнительный функционал. Какой? Давайте посмотрим! Прежде всего, выясним, какие дополнительные компоненты на печатной плате оперативной памяти (кроме самих чипов ОЗУ) являются стандартными? Это ряд твердотельных танталовых SMD конденсаторов, расположенных непосредственно над контактными площадками модуля. Это - компоненты «обвязки» платы памяти.

Вторым обязательным элементом (на фото выше отмечен зеленым) можно назвать микросхему SPD. Аббревиатура расшифровывается как «Serial Presence Detect» - интерфейс последовательного детектирования или последовательное определение наличия. Как-то так:) По сути, - это программируемое ПЗУ, в котором «зашиты» настройки каждого модуля памяти: все параметры, частоты, тайминги, режимы работы и т.д. Именно оттуда при старте компьютера они считываются микросхемой биоса.

Дополнительным микросхемы на серверных платах (обведены красным) обеспечивают возможность выявления и исправления ошибок чтения/записи (технология ECC) и частичной буферизации (регистровость памяти).

Примечание: ECC - (error-correcting code - код коррекции ошибок) Алгоритм выявления и исправления случайных ошибок при передаче данных (не более одного-двух битов в байте).

Для реализации этих возможностей на модуль устанавливается дополнительная микросхема памяти и он становится не 64-х разрядным, как обычные DIMM, а 72-ти двух. Поэтому далеко не все материнские платы могут работать с подобной памятью. Некоторые, надо отдать им должное, - работают! :)

Нажмите на фото выше и Вы сможете увидеть дополнительные обозначения на стикере (выделены красным), которых нет для обычной памяти. Я имею в виду такие сокращения, как: «SYNCH», «CL3 (2.5)», «ECC» и «REG». Остановимся на них отдельно. Поскольку первый из приведенных на фото модулей относится к периоду распространения персональных компьютеров под общим брендом «Pentium», то на нем отдельно присутствует обозначение «SYNCH».

Помните как расшифровывается первая буква аббревиатуры памяти типа SDRAM? Synchronous (синхронная) DRAM. Тип DRAM, работающий настолько быстро, что его можно было синхронизировать по частоте с работой контроллера оперативной памяти. На тот момент это был прорыв! Предыдущие поколения ОЗУ работали в асинхронном режиме передачи данных. Теперь же, команды могли поступать в контроллер непрерывным потоком, не дожидаясь выполнения предыдущих. С одной стороны, это сокращало общее время на их передачу, но с другой (поскольку команды не могли выполняться со скоростью их поступления) появлялось такое понятие, как латентность - задержка выполнения.

Именно о величине латентности модуля серверной памяти говорит нам второй показатель на стикере «CL3». Расшифровывается как «Cas Latency» - минимальное время, измеряемое в тактах системной шины, между командой на чтение (CAS, по факту - передачей в память нужного адреса строки или столбца) и началом передачи данных.

Другое дело, что маркетологи даже здесь пытаются нас надурить и указывают только одну (наименьшую) из всех возможных задержек. На самом деле, разновидностей таймингов существует достаточно много и это - логично: организация работы по передаче, выборке и записи данных в таком большом массиве настолько сложна, что было бы странно, если бы задержек в работе памяти не было совсем или дело ограничивалось одной!

Для примера, некоторые (далеко не все) задержки представлены в таблице ниже:

Таким образом, указывая значение латентности только для одного параметра (CL) с наименьшим показателем и не давая представления о задержках памяти при других операциях, нам пытаются это дело втюхать! Не буду утверждать, что так и происходит, но ощущение возникает именно такое:)

Обозначение ECC мы уже рассматривали выше, не будем повторяться. А вот с указателем «REG» давайте разберемся! Как правило, так обозначаются регистровые (Registered) модули оперативной памяти. Что это значит? Между чипами ОЗУ и шиной устанавливается дополнительная микросхема, которая выполняет роль своеобразного буфера. Поэтому подобный тип регистровой памяти часто называют буферизованной (Buffered) или с частичной буферизацией.

Наличие на модуле памяти специальных регистров (буфера) снижает нагрузку на систему синхронизации (электрической регенерации), разгружая ее контроллер. Регистры относительно быстро сохраняют поступающие в них данные, которые часто требуются приложению. Наличие буфера между контроллером и чипами памяти приводит к образованию дополнительной задержки в один такт, но для серверных систем это нормально. Получаем более высокую надежность за счет небольшого падения производительности.

Оперативная память для ноутбуков называется SO-Dimm и имеет, в силу понятных причин, укороченный дизайн. Выглядит она следующим образом:

Она гораздо более компактна, чем ее десктопные визави, но также имеет уникальный «ключ». Запомните: по положению «ключа» можно определить тип микросхемы. Ну, еще - по надписи на стикере (наклейке) :)

И совсем уж напоследок: приобретайте оперативную память зарекомендовавших себя производителей: «Samsung», «Corsair», «Kingston», «Patriot», «Hynix», «OCZ» и тогда проблемы оперативной памяти будут обходить Вас стороной.

Сокращенно оперативную память компьютера называют ОЗУ (оперативное запоминающее устройство) или RAM (random access memory - память с произвольным доступом).

Название RAM более точно отражает строение и назначение устройства.

Назначение ОЗУ

  • Хранение данных и команд для дальнейшей их передачи процессору для обработки. Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора.
  • Хранение результатов вычислений, произведенных процессором.
  • Считывание (или запись) содержимого ячеек.

Особенности работы ОЗУ

Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ, например, с жесткого диска компьютера. Пока идет работа с программой она присутствует в оперативной памяти (обычно). Как только работа с ней закончена, данные перезаписываются на жесткий диск. Другими словами, потоки информации в оперативной памяти очень динамичны.

ОЗУ представляет собой запоминающее устройство с произвольным доступом . Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ в любой момент времени. Для сравнения, например, магнитная лента является запоминающим устройством с последовательным доступом.

Логическое устройство оперативной памяти

Оперативная память состоит их ячеек, каждая из которых имеет свой собственный адрес. Все ячейки содержат одинаковое число бит. Соседние ячейки имеют последовательные адреса. Адреса памяти также как и данные выражаются в двоичных числах.

Обычно одна ячейка содержит 1 байт информации (8 бит, то же самое, что 8 разрядов) и является минимальной единицей информации, к которой возможно обращение. Однако многие команды работают с так называемыми словами. Слово представляет собой область памяти, состоящую из 4 или 8 байт (возможны другие варианты).

Типы оперативной памяти

Принято выделять два вида оперативной памяти: статическую (SRAM) и динамическую (DRAM). SRAM используется в качестве кэш-памяти процессора, а DRAM - непосредственно в роли оперативной памяти компьютера.

SRAM состоит из триггеров. Триггеры могут находиться лишь в двух состояниях: «включен» или «выключен» (хранение бита). Триггер не хранит заряд, поэтому переключение между состояниями происходит очень быстро. Однако триггеры требуют более сложную технологию производства. Это неминуемо отражается на цене устройства. Во-вторых, триггер, состоящий из группы транзисторов и связей между ними, занимает много места (на микроуровне), в результате SRAM получается достаточно большим устройством.

В DRAM нет триггеров, а бит сохраняется за счет использования одного транзистора и одного конденсатора. Получается дешевле и компактней. Однако конденсаторы хранят заряд, а процесс зарядки-разрядки более длительный, чем переключение триггера. Как следствие, DRAM работает медленнее. Второй минус – это самопроизвольная разрядка конденсаторов. Для поддержания заряда его регенерируют через определенные промежутки времени, на что тратится дополнительное время.

Вид модуля оперативной памяти

Внешне оперативная память персонального компьютера представляет собой модуль из микросхем (8 или 16 штук) на печатной плате. Модуль вставляется в специальный разъем на материнской плате.

По конструкции модули оперативной памяти для персональных компьютеров делят на SIMM (одностороннее расположение выводов) и DIMM (двустороннее расположение выводов) . DIMM обладает большей скоростью передачи данных, чем SIMM. В настоящее время преимущественно выпускаются DIMM-модули.

Основными характеристиками ОЗУ являются информационная емкость и быстродействие. Емкость оперативной памяти на сегодняшний день выражается в гигабайтах.

Оперативная память (ОЗУ, RAM), самая известная из всех рассмотренных ранее форм компьютерной памяти. Эту память называют памятью «произвольного доступа» («random access»), поскольку вы можете получить доступ к любой ее ячейке непосредственно. Для этого достаточно знать строку и столбец, на пересечении которых находится нужная ячейка. Известны два основных вида оперативной памяти: динамическая и статическая. Сегодня мы подробно рассмотрим принцип «дырявого ведра», на котором основана динамическая память. Некоторое внимание будет уделено и статической памяти, быстрой, но дорогой.

Ячейка памяти подобна дырявому ведру

Совсем иначе работает память с последовательным доступом (SAM). Как и следует из ее названия, доступ к ячейкам этой памяти осуществляется последовательно. Этим она напоминает пленку в магнитофонной кассете. Когда данные ищутся в такой памяти, проверяется каждая ячейка до тех пор, пока не будет найдена нужная информация. Память этого типа используется для реализации буферов, в частности буфера текстур видеокарт. То есть SAM имеет смысл применять в тех случаях, когда данные будут расположены в том порядке, в котором их предполагается использовать.

Подобно подробно рассмотренному ранее микропроцессору, чип памяти является интегральной микросхемой (ИС, IC), собранной из миллионов транзисторов и конденсаторов. Одним из наиболее распространенных видов памяти произвольного доступа является DRAM (динамическая память произвольного доступа, dynamic random access memory). В ней транзистор и конденсатор спарены и именно они образуют ячейку, содержащую один бит информации. Конденсатор содержит один бит информации, то есть «0» или «1». Транзистор же играет в этой паре роль переключателя (свитча), позволяющего управляющей схеме чипа памяти считывать или менять состояние конденсатора.

Конденсатор можно представить себе в виде небольшого дырявого «ведерка», которое при необходимости заполняется электронами. Если оно заполнено электронами, его состояние равно единице. Если опустошено, то нулю. Проблемой конденсатора является утечка. За считанные миллисекунды (тысячные доли секунды) полный конденсатор становится пустым. А это значит, что или центральный процессор, или контроллер памяти вынужден постоянно подзаряжать каждый из конденсаторов, поддерживая его в наполненном состоянии. Подзарядку следует осуществлять до того, как конденсатор разрядится. С этой целью контроллер памяти осуществляет чтение памяти, а затем вновь записывает в нее данные. Это действие обновления состояния памяти осуществляется автоматически тысячи раз за одну только секунду.

Конденсатор динамической оперативной памяти можно сравнить с протекающим ведром. Если его не заполнять электронами снова и снова, его состояние станет нулевым. Именно эта операция обновления и внесла в название данного вида памяти слово «динамическая». Такая память или обновляется динамически, или «забывает» все, что она «помнила». Есть у этой памяти существенный недостаток: необходимость постоянно обновлять ее требует времени и замедляет работу памяти.

Устройство ячейки динамической оперативной памяти (DRAM)

Структуру памяти можно представить себе в виде трехмерной сетки. Еще проще: в виде листка из школьной тетради в клеточку. Каждая клеточка содержит один бит данных. Сначала определяется столбец, затем данные записываются в определенные строки посредством передачи сигнала по данному столбцу.

Итак, представим себе тетрадный лист. Некоторые клеточки закрашены красным фломастером, а некоторые остались белыми. Красные клеточки это ячейки, состояние которых «1», а белые - «0».

Только вместо листа из тетради в оперативной памяти используется кремниевая пластина, в которую «впечатаны» столбцы (разрядные линии, bitlines) и строки (словарные шины, wordlines). Пересечение столбца и строки является адресом ячейки оперативной памяти.

Динамическая оперативная память передает заряд по определенному столбцу. Этот заряд называют стробом адреса столбца (CAS, Column Adress Strobe) или просто сигналом CAS. Этот сигнал может активировать транзистор любого бита столбца. Управляющий сигнал строки именуется стробом адреса строки (RAS, Row Adress Strobe). Для указания адреса ячейки следует задать оба управляющих сигнала. В процессе записи конденсатор готов принять в себя заряд. В процессе чтения усилитель считывания (sense-amplifier) определяет уровень заряда конденсатора. Если он выше 50 %, бит читается, как «1»; в остальных случаях, как «0».

Осуществляется также обновление заряда ячеек. За порядком обновления следит счетчик. Время, которое требуется на все эти операции, измеряется в наносекундах (миллиардных долях секунды). Если чип памяти 70-наносекундный, это значит, полное чтение и перезарядка всех его ячеек займет 70 наносекунд.

Сами по себе ячейки были бы бесполезны, если бы не существовало способа записать в них информацию и считать ее оттуда. Соответственно, помимо самих ячеек, чип памяти содержит целый набор дополнительных микросхем. Эти микросхемы выполняют следующие функции:

  • Идентификации строк и столбцов (выбор адреса строки и адреса ячейки)
  • Отслеживание порядка обновления (счетчик)
  • Чтение и возобновление сигнала ячейки (усилитель)
  • Донесение до ячейки сведений о том, следует ли ей удерживать заряд или нет (активация записи)

У контроллера памяти есть и другие функции. Он выполняет набор обслуживающих задач, среди которых следует отметить идентификацию типа, скорости и объема памяти, а также проверку ее на ошибки.

Статическая оперативная память

Хотя статическая оперативная память (подобно динамической) является памятью произвольного доступа, она основана на принципиально иной технологии. Триггерная схема этой памяти позволяет удерживать каждый бит сохраненной в ней информации. Триггер каждой ячейки памяти состоит из четырех или шести транзисторов и содержит тончайшие проводки. Эта память никогда не нуждается в обновлении заряда. По этой причине, статическая оперативная память работает существенно быстрее динамической. Но поскольку она содержит больше компонентов, ее ячейка намного крупнее ячейки динамической памяти. В итоге чип статической памяти будет менее емким, чем динамической.

Статическая оперативная память быстрее, но и стоит дороже. По этой причине статическая память используется в кэше центрального процессора, а динамическая в качестве системной оперативной памяти компьютера. Более подробно о статической памяти написано в разделе «Кэш-память и регистр процессора» материала, посвященного преодолению ограничений компьютерной памяти.

В современном мире чипы памяти комплектуются в компонент, именуемый модулем. Порой компьютерные специалисты называют его «планкой памяти». Один модуль или «планка» содержит несколько чипов памяти. Не исключено, что вам приходилось слышать такие определения, как «память 8×32» или «память 4×16». Разумеется, цифры могли быть иными. В этой простой формуле первым множителем является количество чипов в модуле, а вторым емкость каждого модуля. Только не в мегабайтах, а в мегабитах. Это значит, что результат действия умножения следует разделить на восемь, чтобы получить объем модуля в привычных нам мегабайтах.

К примеру: 4×32 означает, что модуль содержит четыре 32-мегабитных чипа. Умножив 4 на 32, получаем 128 мегабит. Поскольку нам известно, что в одном байте восемь бит, нам нужно разделить 128 на 8. В итоге узнаем, что «модуль 4×32» является 16-мегабайтным и устарел еще в конце минувшего века, что не мешает ему быть превосходным простым примером для тех вычислений, которые нам потребовались.

Тема оперативной памяти настолько обширна, что мы вернемся к ней еще. Нам предстоит узнать о том, какие бывают типы оперативной памяти и как устроен ее модуль. Продолжение следует…

По материалам computer.howstuffworks.com

hi-news.ru

Как работает оперативная память и зачем она нужна - Заметки Сис.Админа

Мое почтение, уважаемые читатели, други, недруги и прочие личности!

Сегодня хочется поговорить с Вами о такой важной и полезной штуке как оперативная память, в связи с чем опубликовано сразу две статьи, одна из которых рассказывает о памяти вообще (тобишь ниже по тексту), а другая рассказывает о том как эту самую память выбрать (собственно, статья находится прямо под этой, просто опубликована отдельно).

Изначально это был один материал, но, дабы не делать очередную многобуквенную страницу-простыню, да и просто из соображений разделения и систематизации статей, было решено разбить их на две.

Так как процесс дробления был произведен на лету и почти в последний момент, то возможны некоторые огрехи в тексте, которых не стоит пугаться, но можно сообщить об оных в комментариях, дабы, собственно, их так же на лету исправить.

Ну, а сейчас, приступаем.

Перед каждым пользователем рано или поздно (или никогда) встает вопрос модернизации своего верного «железного коня». Некоторыесразу меняют «голову» - процессор, другие - колдуют над видеокартой, однако, самый простой и дешевый способ – это увеличение объема оперативной памяти.

Почему самый простой?

Да потому что не требует специальных знаний технической части, установка занимает мало времени и не создает практически никаких сложностей (и еще он наименее затратный из всех, которые я знаю).

Итак, чтобы узнать чуть больше о таком простом и одновременно эффективном инструменте апгрейда, как оперативная память (далее ОП), для этого обратимся к родимой теории.

ОЗУ (оперативное запоминающее устройство), оно же RAM ("Random Access Memory" - память с произвольным доступом), представляет собой область временного хранения данных, при помощи которой обеспечивается функционирование программного обеспечения. Физически, оперативная память в системе представляет собой набор микросхем или модулей (содержащих микросхемы), которые обычно подключаются к системной плате.

В процессе работы память выступает в качестве временного буфера (в ней хранятся данные и запущенные программы) между дисковыми накопителями и процессором, благодаря значительно большей скорости чтения и записи данных.

Примечание. Совсем новички часто путают оперативную память с памятью жесткого диска (ПЗУ - постоянное запоминающее устройство), чего делать не нужно, т.к. это совершенно разные виды памяти. Оперативная память (по типу является динамической - Dynamic RAM), в отличие от постоянной - энергозависима, т.е. для хранения данных ей необходима электроэнергия, и при ее отключении (выключение компьютера) данные удаляются. Пример энергонезависимой памяти ПЗУ - флэш-память, в которой электричество используется лишь для записи и чтения, в то время как для самого хранения данных источник питания не нужен.

По своей структуре память напоминает пчелиные соты, т.е. состоит из ячеек, каждая из которых предназначена для хранения мёда определенного объема данных, как правило, одного или четырех бит. Каждая ячейка оной имеет свой уникальный «домашний» адрес, который делится на два компонента – адрес горизонтальной строки (Row) и вертикального столбца (Column).

Ячейки представляют собой конденсаторы, способные накапливать электрический заряд. С помощью специальных усилителей аналоговые сигналы переводятся в цифровые, которые в свою очередь образуют данные (ну как, мощно я Вас нагрузил:-)). Для передачи на микросхему памяти адреса строки служит некий сигнал, который зовется RAS (Row Address Strobe), а для адреса столбца - сигнал CAS (Column Address Strobe).

Работа оперативной памяти непосредственно связана с работой процессора и внешних устройств компьютера, так как именно ей последние «доверяют» свою информацию. Таким образом, данные сперва попадают с жесткого диска (или другого носителя) в саму ОЗУ и уже затем обрабатываются центральным процессором (смотрите изображение).

Обмен данными между процессором и памятью может происходить напрямую, но чаще все же бывает с участием кэш-памяти.

Кэш-память является местом временного хранения наиболее часто запрашиваемой информации и представляет собой относительно небольшие участки быстрой локальной памяти. Её использование позволяет значительно уменьшить время доставки информации в регистры процессора, так как быстродействие внешних носителей (оперативки и дисковой подсистемы) намного хуже процессорного. Как следствие, уменьшаются, а часто и полностью устраняются, вынужденные простои процессора, что повышает общую производительность системы.

Оперативной памятью управляет контроллер, который находится в чипсете материнской платы, а точнее в той его части, которая называется North Bridge (северный мост) - он обеспечивает подключение CPU (процессора) к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер (смотрите изображение).

Примечание. Важно понимать, что если в процессе работы оперативной памяти производится запись данных в какую-либо ячейку, то её содержимое, которое было до поступления новой информации, будет безвозвратно утеряно. Т.е. по команде процессора данные записываются в указанную ячейку, одновременно стирая при этом то, что там было записано ранее.

Рассмотрим еще один важный аспект работы оперативки – это ее деление на несколько разделов с помощью специального программного обеспечения (ПО), которое поддерживается операционными системами.

Сейчас Вы поймете, о чем это я.

Дело в том, что современные устройства оперативной памяти являются достаточно объемными (привет двухтысячным, когда хватало и 32 Mб), чтобы в ней можно было размещать данные от нескольких одновременно работающих задач. Процессор также может одновременно обрабатывать несколько задач. Это обстоятельство способствовало развитию так называемой системы динамического распределения памяти, когда под каждую обрабатываемую процессором задачу отводятся динамические (переменные по своей величине и местоположению) разделы оперативной памяти.

Динамический характер работы позволяет распоряжаться имеющейся памятью более экономно, своевременно «изымая» лишние участки памяти у одних задач и «добавляя» дополнительные участки – другим (в зависимости от их важности, объема обрабатываемой информации, срочности выполнения и т.п.). За «правильное» динамическое распределение памяти в ПК отвечает операционная система, тогда как за «правильное» использование памяти, отвечает прикладное программное обеспечение.

Совершенно очевидно, что прикладные программы должны иметь способность работать под управлением операционной системы, в противном случае последняя не сможет выделить такой программе оперативную память или она не сможет «правильно» работать в пределах отведенной памяти. Именно поэтому не всегда удается запустить под современной операционкой, ранее написанные программы, которые работали под управлением устаревших систем, например под ранними версиями Windows (Windows 98).

Ещё (для общего развития) следует знать, что последняя, из ныне обитающих на компьютерах пользователей, операционная система Windows 7, разрядностью 64 бита, поддерживает объем памяти до 192 Гбайт (младший 32-битный собрат "видит" не больше 4 Гбайт). Однако, если Вам и этого мало, пожалуйста, 128-разрядная Windows 8 заявляет поддержку поистине колоссальных объемов – я даже не осмеливаюсь озвучить эту цифру (для тех, кто хочет сие проверить - дерзайте, магазины рядом:-)).

Как мы уже знаем, обмен данными между процессором и памятью происходит чаще всего с участием кэш-памяти. В свою очередь, ею управляет специальный контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их, т.е. кэш-контроллер загружает в кэш-память нужные данные из оперативной памят­и, и возвращает, когда нужно, модифицирован­ные процессором данные в оперативку.

После процессора, оперативную память можно считать самым быстродействующим устройством. Поэтому основной обмен данными и происходит между этими двумя девайсами. Вся информация в персональном компьютере хранится на жестком диске. При включении компа в ОЗУ с винта записываются драйверы, специальные программы и элементы операционной системы. Затем туда записываются те программы – приложения, которые мы будем запускать, при закрытии последних они будут стерты из оной.

Данные, записанные в оперативной памяти, передаются в CPU (он же не раз упомянутый процессор, он же Central Processing Unit), там обрабатываются и записываются обратно. И так постоянно: дали команду процессору взять биты по таким-то адресам (как то: обработатьих и вернуть на место или записать на новое) – он так и сделал (смотрите изображение).

Все это хорошо до тех пор, пока ячеек памяти (1) хватает. А если нет?

Тогда в работу вступает файл подкачки (2). Этот файл расположен на жестком диске и туда записывается все, что не влезает в ячейки оперативной памяти. Поскольку быстродействие винта значительно ниже ОЗУ, то работа файла подкачки сильно замедляет работу системы. Кроме этого, это снижает долговечность самого жесткого диска. Но это уже совсем другая история.

Примечание. Во всех современных процессорах имеется кэш (cache) - массив сверхскоростной оперативной памяти, являющейся буфером между контроллером сравнительно медленной системной памяти и процессором. В этом буфере хранятся блоки данных, с которыми CPU работает в текущий момент, благодаря чему существенно уменьшается количество обращений процессора к чрезвычайно медленной (по сравнению со скоростью работы процессора) системной памяти. Однако, кэш-память малоэффективна при работе с большими массивами данных (видео, звук, графика, архивы), ибо такие файлы просто туда не помещаются, поэтому все время приходится обращаться к оперативной памяти, или к HDD (у которого также имеется свой кэш).

Компоновка модулей Кстати, давайте рассмотрим из чего же состоит (из каких элементов) сам модуль.

Так как практически все модули памяти, состоят из одних и тех же конструктивных элементов, мы для наглядности возьмем стандарт SD-RAM (для настольных компьютеров). На изображении специально приведено разное конструктивное исполнение оных (чтобы Вы знали не только «шаблонное» исполнение модуля, но и весьма «экзотическое»).

Итак, модули стандарта SD-RAM (1): DDR (1.1); DDR2 (1.2).

Описание:

  1. Чипы (микросхемы) памяти
  2. SPD (Serial Presence Detect) – микросхема энергонезависимой памяти, в которую записаны базовые настройки любого модуля. Во время старта системы BIOS материнской платы считывает информацию, отображенную в SPD, и выставляет соответствующие тайминги и частоту работы ОЗУ
  3. «Ключ» - специальная прорезь платы, по которой можно определить тип модуля. Механически препятствует неверной установке плашек в слоты, предназначенные для оперативной памяти
  4. SMD-компоненты модулей (резисторы, конденсаторы). Обеспечивают электрическую развязку сигнальных цепей и управление питанием чипов
  5. Cтикеры производителя - указывают стандарт памяти, штатную частоту работы и базовые тайминги
  6. РСВ – печатная плата. На ней распаиваются остальные компоненты модуля. От качества зачастую зависит результат разгона: на разных платах одинаковые чипы могут вести себя по-разному.

Вот как-то так.

На сим всё. Как и всегда, если есть какие-то вопросы, комментарии, дополнения и тп, то можете смело бежать в комментарии, которые расположены ниже. И да, не забудьте прочитать материал по выбору этой самой оперативной памяти;).

PS: За существование данной статьи спасибо члену команды 25 КАДР

sonikelf.ru

ОЗУ - что это такое и как работает?

Приобретая новенький компьютер, всегда обращаешь внимание на его характеристики, ведь это его лицо и главные достоинства. В числе многих параметров обязательно встретится сокращение из трех букв - ОЗУ. Что это такое и для чего нужно? Какое оптимальное количество нужно для нормальной работы ПК? Обо всем этом читайте ниже.

Определение и функции

ОЗУ - оперативное запоминающее устройство, предназначенное для сохранения данных при включенном компьютере. То есть все запущенные процессы и задачи на ПК в реальном времени хранятся именно в этом месте, откуда впоследствии обрабатываются процессором. Также можно встретить второе наименование такого устройства - RAM, что с английского расшифровывается как random access memory, или "память с произвольным терминалом". ОЗУ выполняет ряд важных задач, без которых функционирование всей системы просто-напросто невозможно:


Особенности функционирования

ОЗУ способно хранить информацию только при включенном ПК. С этой целью необходимо сохранять все данные, с которыми проводилась работа, на жесткий диск. ОЗУ - что это такое? Другими словами, это запоминающее устройство, с помощью которого осуществляется деятельность всех процессов и программ. Через оперативную память проходит множество динамичных потоков информации. Запоминающее устройство с произвольным доступом (ОЗУ) - что это такое и что под этим подразумевается? Такая технология позволяет читать и записывать данные в любых ячейках памяти в любой момент времени.

Как все устроено?

Как работает ОЗУ? Что это такое, вы уже знаете. А как именно оно функционирует? Абсолютно любая оперативная память содержит в себе ячейки, причем каждая из их числа имеет свой личный адрес. Несмотря на это все они содержат в себе равное количество бит, число которых равно 8 (8 бит = 1 байт). Это минимальная единица измерения любой информации. Все адреса имеют вид двоичных чисел (0 и 1), собственно так же, как и данные. Ячейки, расположенные по соседству, наследуют последовательные адреса. Многие команды осуществляются с помощью "слов", областей памяти, состоящих из 4 или 8 байт.

Видовое разнообразие

Общая классификация делит данное устройство на 2 типа памяти: SRAM (статическая) и DRAM (динамическая). Первая используется как кеш-память ЦП, второй отводится роль оперативной памяти ПК. Любая SRAM содержит триггеры, которые могут находиться в двух состояниях: "включено" и "выключено". Они включают в себя сложный процесс построения технологической цепи, ввиду чего занимают много места. Цена данного устройства будет значительно выше, нежели DRAM, в которой отсутствуют триггеры, но есть 1 транзистор и 1 конденсатор, из-за чего оперативная память получается компактней (например - ОЗУ DDR2). Оптимальное ее количество на данный момент составляет порядка 4 Гб, если же компьютерная платформа предназначена для игр, тогда рекомендуется увеличить данное число в 2 раза. Сегодня мы разобрались в ОЗУ - что это такое и как оно работает. Теперь читатель представляет основной принцип функционирования данного устройства.

fb.ru

Часто задаваемые Hardware вопросы 3 - RAM

Каждый день огромное количество людей на форумах задают множество вопросов, просят помочь или посоветовать продукт в той или иной секции. И наш родной гудгейм (goodgame.ru) - не исключение. В сегодняшнем креативе я попытаюсь рассмотреть широкий спектр наиболее популярных и часто задаваемых hardware вопросов и их последовательные решения. И сегодня пойдёт речь о оперативной памяти...

Что такое оперативная память (RAM)?

Энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Обязательным условием является адресуемость (каждое машинное слово имеет индивидуальный адрес) памяти. Передача данных в/из оперативную память процессором производится непосредственно, либо через сверхбыструю память. От объема оперативной памяти (кстати, еще ее называют ОЗУ – оперативное запоминающее устройство) зависит количество задач, которые одновременно может выполнять компьютер.

Принцип работы оперативной памяти можно представить следующим образом. Поскольку ячейки организованы в виде двумерной матрицы, для получения доступа к той или иной ячейке необходимо указать адрес соответствующих строки и столбца. Для выбора адреса применяются импульсы RAS# (Row Access Strobe - стробирующий импульс доступа к строке) и CAS# (Column Acess Strobe - стробирующий импульс доступа к столбцу) при которых уровень сигнала (точнее, напряжение) изменяется с высокого на низкий. Эти импульсы синхронизированы с тактирующим импульсом, поэтому оперативная память также называется синхронной (SDRAM). Сначала подается сигнал активации необходимой строки, после чего - импульс RAS#, а затем - CAS#. При операции записи происходит то же самое, за исключением того, что в этом случае подается специальный импульс разрешения записи WE# (Write Enable), который также должен измениться с высокого на низкий. После завершения работы со всеми ячейками активной строки выполняется команда Precharge, позволяющая перейти к следующей строке. Существуют и другие сигналы, но в контексте данной статьи их можно не упоминать, чтобы неоправданно не усложнять материал.

Схема взаимодействия оперативной памяти с другими компонентами ПК:

Как разделяется оперативная память?

1) Динамическую - англ. DRAM (Dynamic Random Access Memory)

2) Статическую - SRAM (Static Random Access Memory)

1. Экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус - конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени, память на конденсаторах получила своё название динамическая память. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти, за определённое количество тактов считывания при адресации по строкам. Так как для регенерации памяти периодически приостанавливаются все операции с памятью, это значительно снижает производительность данного вида ОЗУ.

2. ОЗУ, которое не надо регенерировать (и обычно схемотехнически собранное на триггерах), называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти - скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для организации сверхбыстрого ОЗУ, критичного к скорости работы.

Как выбрать оперативную память?

Обращаем внимание при выборе на:

1) Тип памяти

2) Объем памяти 3) Тактовую частоту памяти 4) Латентность (тайминги) 5) Производителя 6) Бюджет (цену)

Что такое латентность (тайминги)?

Латентность (тайминги) - Временные задержки сигнала. Значения таймингов обычно имеют вид, например, 3-3-3-9 или 4-4-4-12 итп.... По порядку это CAS Latency (CL), RAS to CAS Delay (tRCD), RAS Precharge Time (tRP) и Active to Precharge (tRas), не буду вдаваться в подробности, что все это такое, главной здесь нужно знать, что чем ниже тайминги, тем лучше (при выборе из двух модулей одного типа, например, PC2-6400).

С точки зрения пользователя, информация о таймингах позволяет примерно оценить производительность оперативной памяти, до её покупки. Таймингам памяти поколения DDR придавалось большое значение, поскольку кеш процессора был относительно мал и программы часто обращались к памяти. Таймингам памяти поколения DDR3 уделяется гораздо меньшее внимания, поскольку современные процессоры (например Intel Core DUO и Intel I5,I7) имеют относительно большие L2 кеши и снабжены (опять же относительно) огромным L3 кеш, что позволяет этим процессорам гораздо реже обращаться к памяти, а в некоторых случаях программа целиком помещается в кеш процессора

А как же тактовая частота?

Как правило, компьютер работает быстрее, если тактовая частота оперативной памяти выше. Если нужна память DDR-2, подойдет память DDR2-800 с эффективной частотой 800 МГц или DDR2-1066 (1066 МГц). Если необходима память DDR-3, то оптимально выбрать DDR3-1333, DDR3-1660 (1333/1600 соответственно МГц). Перед покупкой обязательно проверьте, какие частоты памяти поддерживает ваша материнская плата.

Какое охлаждение применяется при охлаждении оперативной памяти?

1) Активное (вентиляторы)

2) Пассивное (пассивы, радиаторы) 3) Водяное 5) Экстремальное (азот, фреон, жидкий гелий...) 6) Комбинированное - например пассивный радиатор на который крепятся вентиляторы

Какие наиболее популярные производители оперативной памяти?

Kingston, OCZ, Corsair, Mushkin, Crucial, Geil, Team, Patriot, A-Data и множество других)

Какой наиболее популярный объём памяти на данный момент?

Скажем так:

1) минимум -> 512-1024MB (512МБ и 1ГБ)

2) среднячок -> 2048-3072MB (2ГБ и 3ГБ) 3) оптимально, рекомендовано, на будущее (с залогом) -> 4096-6144MB (4ГБ и 6ГБ) 4) экстрем -> с выше 8096МБ (8ГБ), т.е 16ГБ, 24ГБ, 48ГБ и так далее..

Что такое двухканальный режим оперативной памяти?

Двухканальный режим - режим работы оперативной памяти компьютера (RAM), при котором работа с каждым вторым модулем памяти осуществляется параллельно работе с каждым первым (то есть 1 (и 3) модуль(и) работают параллельно с 2 (и 4), причем каждая пара на своем канале - в то время как на одноканальном контроллере памяти все модули обслуживаются одновременно одним контроллером (упрощенно можно сказать - каналом). Общий объём доступной памяти в двухканальном режиме (как и в одноканальном) равен суммарному объёму установленных модулей памяти.

Двухканальный режим поддерживается, если на обоих каналах DIMM установлено одинаковое количество памяти. Технология и скорость устройств на разных каналах могут отличаться друг от друга, однако общий объем памяти для каждого канала должен быть одинаковым. При использовании на разных каналах модулей DIMM с различной скоростью память будет работать на более медленной, поддерживаемой всеми модулями, скорости.

Какие правила включения двухканального режима?

Двухканальный режим может быть получен при использовании чётного числа модулей DIMM.

Для включения двухканального режима необходимо выполнить следующие условия:

Одинаковая конфигурация модулей DIMM на каждом канале Одинаковая плотность (128 МБ, 256 МБ, 512 МБ, и т.п.) Каналы памяти A и B должны быть идентичны На большинстве материнских плат (за редким исключением) должны быть заполнены симметричные разъемы памяти (разъем 0 или разъем 1)

Т.е. в двух-канальном режиме будет работать память одного объёма, одной частоты, одного производителя, одного типа.

От чего зависит прирост производительности от двухканального режима работы памяти?

Типа памяти;

Таймингов, задержек памяти;

Типа чипсета мат. платы или типа контроллера памяти;

Частоты работы памяти

и ряда других факторов

Что такое трёхканальный режим оперативной памяти?

Трехканальный режим - режим работы оперативной памяти компьютера (RAM), при котором осуществляется параллельная работа трех каналов памяти. То есть параллельно работают 3 (или три пары) модулей - 1 (и 2), 3 (и 4) и 5 (и 6). Теоретически дает до 300% производительности по сравнению с одноканальным режимом. На практике оказывается ненамного производительнее, а иногда и медленнее 2-канального режима.

Какие правила включения трёхканального режима в оперативной памяти?

Трехканальный режим может быть получен при использовании трех, шести, или, иногда, 9 модулей памяти.

Для включения трехканального режима необходимо выполнить следующие условия:

Одинаковая конфигурация модулей DIMM на каждом канале Одинаковая плотность (128 Мбит, 256 Мбит, и т.п.) Каналы памяти A, B и C должны быть идентичны На большинстве материнских плат (за редким исключением) должны быть заполнены симметричные разъемы памяти (разъем 0 или разъем 1)

Какие модули оперативной памяти поддерживают на сегоднешний день материнские платы?

1) стандарта DDR2

2) стандарта DDR3 3) в будущем стандарта DDR4

Раньше была "ин" поддержка памяти типа DDR (DDR1)

Что такое четырехканальный режим памяти?

В этом режиме вся оперативная память разбивается на четыре блока, с каждым блоком памяти работает отдельный независимый контроллер, благодаря чему эффективная пропускная способность увеличивается в четыре раза. Для работы в четырехканальном режиме необходимо использовать модули памяти одинакового объема с одинаковыми характеристиками, установленные группами по четыре штуки. Четырехканальные контроллеры памяти используются в основном в серверных платформах, где требуется высокая скорость работы с памятью.

Что такое пропускная способность памяти?

Пропускная способность памяти (кратко: ПСП) - количество данных, которые теоретически можно передать в память / из памяти за 1 секунду.

Рассчитывается по формуле:

ПСП = количество данных, передаваемых за 1 такт * тактовая частота памяти

Заметна ли разница между DDR3-1333MHz и DDR3-1600MHz и даст ли она мене существенного преимущества?

Скажем сразу! Разница между 1333 и 1600MHz почти равна нулю! (от силы 1-2%). Дополнительной производительности оно не даст! За то сэкономите не мало денег. Разница особо заметна при разгоне (где каждый мегагерз равен на вес золота) и объёмном рендеринге тяжелых задач (3дстудиомакс,мая,рендеринг, пифаст итп..), В играх разницы не будет!

А а видеокартах ведь же тоже используется память DDR3/DDR4? Так ли?

Нет, не совсем так! Так как у современных граф. адаптеров используются памяти типа: GDDR, GDDR2, GDDR3, GDDR4, GDDR5. Где приставка G означает graphics/gpu (графика). К тому же пропускная способность памяти у график в десятки раз выше

Какое разделение DRAM модулей в компьютере?

DIPP, DILL, SIPP

SIMM - (72pin, 30pin) - (Один модуль памяти Inline) DIMM - 3,3 В и 5 В - (Dual встроенные модули памяти) - это на самом деле два интегрированные модули памяти на одной плате. Занимает всю ширину шины. SDR - (Single Data Rate), а называется SDRAM (синхронной динамической оперативной памяти), старый тип памяти DIMM (3,3 или 5 В), 168 контактов, емкостью от 16 МБ до 512 МБ, скорость от 66 МГц до 133 МГц DDR - (Double Data Rate) память нового типа SDR, 3,3 В, 184pinů (разные слоты месте, а не только один из двух), мощностью от 64 до 2048 мегабайт Разница в том, что он передает данные на переднем крае (в начале) и конце тактового импульса. DDR2 - новый тип памяти DDR, как и DDR, имеют более высокую частоту, они становятся настоящим стандартом. Недостаток: задержки у DDR2 выше, чем у DDR. DDR3 - Они немного дороже, но более мощнее. Максимальная частота 3068MHz. DDR4 - пока не доступен на ПК рынке, был объявлен компанией JEDEC. Развитие и продаж ожидается в 2013 году + ожидается смещения рынка DDR3 в 2015 году (ДДР4 станет стандартом а ДДР3 будет постепенно уходить в прошлое). Максимальная часы 4266MHz при 1,05 V. У самсунга уже имеются первые прототипы ДДР4 памяти SO-DIMM - DIMM ноутбук память, 72pin или 144/200-контактный RIMM - Rambus DRAM. В отличие от DDR DIMM имеет только 16-битную передачу ширину по шине, но за то значительно быстрее

Как тестируется оперативная память?

Она тестируется несколькими тестами:

Memtest86+ – Тест операвтивной памяти

Эту утилиту можно запускать с загрузочной дискеты или компакт-диска. MemTest86+, кроме своих прямых обязанностей, определяет основные характеристики компьютера, такие как чипсет, процессор и скорость работы памяти. У программы есть два режима работы: basic и advanced (основной и расширенный). Они отличаются временем тестирования. В основном режиме можно определить какие-то глобальные проблемы с памятью, а в расширенном режиме проводится более тщательное тестирование.

Переписать программу можно в виде образа загрузочной дискеты или компакт-диска. Разархивируйте переписанный файл и создайте загрузочный диск, выполнив команду install (для образа дискеты) или запишите ISO файл на компакт-диск с помощью программ записи, например, Nero или Easy CD Creator.

Перезагрузите компьютер и загрузитесь с полученной загрузочной дискеты или компакт-диска. Запустите MemTest86+. Основной тест начнется автоматически.

Docmem – Тест операвтивной памяти

Docmem – это удобная программа для тестирования памяти, которая пользуется заслуженной популярностью. Ее можно переписать с сайта производителей бесплатно, только нужно зарегистрироваться.

Windows memory diagnostic – Тест оперативной памяти

Компания Microsoft предлагает собственную диагностическую программу, похожую на две предыдущие. Она предлагается в виде стандартного установочного файла с образом загрузочного компакт-диска и программой для создания загрузочной дискеты.

Windows memory diagnostic – это более простая программа, чем предыдущие. Кроме того, она имеет дополнительный набор тестов для проверки компьютера. Она позволяет определить, какой именно модуль является источником проблем, если в системе установлено несколько модулей памяти.

Что такое разгон? От чего зависит разгонный потенциал?

Разгон или оверклокинг (от англ. overclocking) - повышение быстродействия компонентов компьютера за счёт эксплуатации их в форсированных (нештатных) режимах работы.

Ну а если говорить проще, то разгон – это принудительная работа оборудования на повышенных частотах.

Что такое разгон оперативной памяти?

Разгон - это просто: оперативная память!!!

Здесь всё отлично рассказано и показано:). Читаем, разгоняем.

Таак! Ну на этом на сегодня всё уважаемыe пользователи и читатели, я надеюсь, что данный материал был хоть как-то полезным. В следующий раз рассмотрим материнскую плату (MoBo). Удачи:)

goodgame.ru

Как работает оперативная память. Информационная статья

Как работает оперативная память?

Оперативная память является обязательной частью любого компьютера, смартфона, планшета, или же любой другой компьютерной системы.

Ее основной функцией является хранение данных, необходимых для работы системы именно в настоящее время. Для создания первого подобного устройства (как впрочем, при создании последующих) использовали динамическую память. Она работает медленне чем статическая память, но не требует больших затрат при производстве. Именно статическая память используется для создания кеша.

Ядра микросхем в устройстве составлены из множества ячеек памяти. Все они спаиваются в единую матрицу, выполненную в виде таблицы с прямыми углами. Эти таблицы именуется страницами. На них располагаются горизонтальные и вертикальные линейки - строки и столбцы. Цельная группа страниц именуется банком. Строки и столбцы служат проводниками, а там, где они пересекаются, устанавливается ячейка памяти. В их состав входят полевой транзистор и конденсатор.

Именно в конденсаторах и хранится информация, не превышающая по размерам 1 бит. То есть, если конденсатор несет в себе заряд, в нем находится одна логическая единица, если же заряд в нем отсутствует, там находится логический ноль. Вторая составляющая ячейки памяти необходима для того, чтобы удерживать информацию (заряд) в конденсаторе, или же извлекать ее оттуда.

Конденсаторы - чрезвычайно маленькие устройства, потому и несут минимальный объем информации. Помимо этого, он не может достаточно долго хранить в себе заряд, поэтому чтобы устранить эту проблему используют регенерацию памяти. Это явление позволяет через определенный период времени считывать информацию и производить повторную запись. Потому такой вид памяти и был назван динамическим.

Чтобы устройство могло считать память, оно посылает сигнал на заданную строку, и высвобождает заряд, хранящийся в конденсаторе, при условии что он там нам наличествует. К каждому из них подключается усилитель, способный среагировать даже на чрезвычайно малый поток электронов из конденсатора. Однако ввиду особенностей конструкции, при открытии одного конденсатора открываются все остальные, поэтому минимальный объем чтения начинается с одной строки в матрице.

Однако при считывании памяти с задействованных ячеек удаляется вся информация. Дело в том, что считывание сопряжено с потерей всеми использованными конденсаторами хранящихся в них данных, это необходимо для того, чтобы конденсатор мог взаимодействовать с чувствительным усилителем. Поэтому, чтобы сохранить данные после считывания, нужно произвести повторную запись на каждой использованной строке.

В интерфейсной части памяти можно определить линии адреса, а также линии, в которых хранятся данные. Адресные линии укажут, где именно расположена ячейка, хранящая определенную информацию, а на других линиях происходит чтение и запись памяти.

voprosu-i-otvety.ru

Оперативная память (ОЗУ, RAM) , самая известная из всех форм компьютерной памяти. Эту память называют памятью «произвольного доступа» («random access»), поскольку вы можете получить доступ к любой ее ячейке непосредственно. Для этого достаточно знать строку и столбец, на пересечении которых находится нужная ячейка. Известны два основных вида оперативной памяти: динамическая и статическая. Сегодня мы подробно рассмотрим принцип «дырявого ведра», на котором основана динамическая память. Некоторое внимание будет уделено и статической памяти, быстрой, но дорогой.

Ячейка памяти

Совсем иначе работает память с последовательным доступом (SAM). Как и следует из ее названия, доступ к ячейкам этой памяти осуществляется последовательно. Этим она напоминает пленку в магнитофонной кассете. Когда данные ищутся в такой памяти, проверяется каждая ячейка до тех пор, пока не будет найдена нужная информация. Память этого типа используется для реализации буферов, в частности буфера текстур видеокарт. То есть SAM имеет смысл применять в тех случаях, когда данные будут расположены в том порядке, в котором их предполагается использовать.

Подобно микропроцессору, чип памяти является интегральной микросхемой (ИС, IC), собранной из миллионов транзисторов и конденсаторов. Одним из наиболее распространенных видов памяти произвольного доступа является DRAM (динамическая память произвольного доступа, dynamic random access memory). В ней транзистор и конденсатор спарены и именно они образуют ячейку, содержащую один бит информации. Конденсатор содержит один бит информации, то есть «0» или «1». Транзистор же играет в этой паре роль переключателя (свитча), позволяющего управляющей схеме чипа памяти считывать или менять состояние конденсатора.

Конденсатор можно представить себе в виде небольшого дырявого «ведерка», которое при необходимости заполняется электронами. Если оно заполнено электронами, его состояние равно единице. Если опустошено, то нулю. Проблемой конденсатора является утечка. За считанные миллисекунды (тысячные доли секунды) полный конденсатор становится пустым. А это значит, что или центральный процессор, или контроллер памяти вынужден постоянно подзаряжать каждый из конденсаторов, поддерживая его в наполненном состоянии. Подзарядку следует осуществлять до того, как конденсатор разрядится. С этой целью контроллер памяти осуществляет чтение памяти, а затем вновь записывает в нее данные. Это действие обновления состояния памяти осуществляется автоматически тысячи раз за одну только секунду. И все же — как работает оперативная память? Конденсатор динамической оперативной памяти можно сравнить с протекающим ведром. Если его не заполнять электронами снова и снова, его состояние станет нулевым. Именно эта операция обновления и внесла в название данного вида памяти слово «динамическая». Такая память или обновляется динамически, или «забывает» все, что она «помнила». Есть у этой памяти существенный недостаток: необходимость постоянно обновлять ее требует времени и замедляет работу памяти.

Устройство ячейки динамической оперативной памяти (DRAM)

Как работает оперативная память? Структуру памяти можно представить себе в виде трехмерной сетки. Еще проще: в виде листка из школьной тетради в клеточку. Каждая клеточка содержит один бит данных. Сначала определяется столбец, затем данные записываются в определенные строки посредством передачи сигнала по данному столбцу.

Итак, представим себе тетрадный лист. Некоторые клеточки закрашены красным фломастером, а некоторые остались белыми. Красные клеточки это ячейки, состояние которых «1», а белые - «0».

Только вместо листа из тетради в оперативной памяти используется кремниевая пластина, в которую «впечатаны» столбцы (разрядные линии, bitlines) и строки (словарные шины, wordlines). Пересечение столбца и строки является адресом ячейки оперативной памяти.


ram

Динамическая оперативная память передает заряд по определенному столбцу. Этот заряд называют стробом адреса столбца (CAS, Column Adress Strobe) или просто сигналом CAS. Этот сигнал может активировать транзистор любого бита столбца. Управляющий сигнал строки именуется стробом адреса строки (RAS, Row Adress Strobe). Для указания адреса ячейки следует задать оба управляющих сигнала. В процессе записи конденсатор готов принять в себя заряд. В процессе чтения усилитель считывания (sense-amplifier) определяет уровень заряда конденсатора. Если он выше 50 %, бит читается, как «1»; в остальных случаях, как «0».

Осуществляется также обновление заряда ячеек. За порядком обновления следит счетчик. Время, которое требуется на все эти операции, измеряется в наносекундах (миллиардных долях секунды). Если чип памяти 70-наносекундный, это значит, полное чтение и перезарядка всех его ячеек займет 70 наносекунд.

Сами по себе ячейки были бы бесполезны, если бы не существовало способа записать в них информацию и считать ее оттуда. Соответственно, помимо самих ячеек, чип памяти содержит целый набор дополнительных микросхем. Эти микросхемы выполняют следующие функции:

— Идентификации строк и столбцов (выбор адреса строки и адреса ячейки)

— Отслеживание порядка обновления (счетчик)

— Чтение и возобновление сигнала ячейки (усилитель)

— Донесение до ячейки сведений о том, следует ли ей удерживать заряд или нет (активация записи)

У контроллера памяти есть и другие функции. Он выполняет набор обслуживающих задач, среди которых следует отметить идентификацию типа, скорости и объема памяти, а также проверку ее на ошибки.

Статическая оперативная память (Оперативка)

Хотя статическая оперативная память (подобно динамической) является памятью произвольного доступа, она основана на принципиально иной технологии. Триггерная схема этой памяти позволяет удерживать каждый бит сохраненной в ней информации. Триггер каждой ячейки памяти состоит из четырех или шести транзисторов и содержит тончайшие проводки. Эта память никогда не нуждается в обновлении заряда. По этой причине, статическая оперативная память работает существенно быстрее динамической. Но поскольку она содержит больше компонентов, ее ячейка намного крупнее ячейки динамической памяти. В итоге чип статической памяти будет менее емким, чем динамической.

Статическая оперативная память быстрее, но и стоит дороже. По этой причине статическая память используется в кэше центрального процессора, а динамическая в качестве системной оперативной памяти компьютера.

В современном мире чипы памяти комплектуются в компонент, именуемый модулем. Порой компьютерные специалисты называют его «планкой памяти». Один модуль или «планка» содержит несколько чипов памяти. Не исключено, что вам приходилось слышать такие определения, как «память 8×32» или «память 4×16». Разумеется, цифры могли быть иными. В этой простой формуле первым множителем является количество чипов в модуле, а вторым емкость каждого модуля. Только не в мегабайтах, а в мегабитах. Это значит, что результат действия умножения следует разделить на восемь, чтобы получить объем модуля в привычных нам мегабайтах.

К примеру: 4×32 означает, что модуль содержит четыре 32-мегабитных чипа. Умножив 4 на 32, получаем 128 мегабит. Поскольку нам известно, что в одном байте восемь бит, нам нужно разделить 128 на 8. В итоге узнаем, что «модуль 4×32» является 16-мегабайтным и устарел еще в конце минувшего века, что не мешает ему быть превосходным простым примером для тех вычислений, которые нам потребовались.

Тема оперативной памяти настолько обширна, что мы вернемся к ней еще. Нам предстоит узнать о том, какие бывают типы оперативной памяти и как устроен ее модуль.

Оперативная память (RAM - Random Access Метопy ) - это массив кристаллических ячеек, способных хранить данные. Существует много различных типов оперативной памяти, но, с точки зрения физического принципа действия, различают динамическую память (DRAM ) и статическую память (SRAM ).

Ячейки динамической памяти (DRAM ) можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках. Это наиболее распространенный и экономически доступный тип памяти. Недостатки этого типа связаны, во-первых, с тем, что как при заряде, так и при разряде конденсаторов неизбежны переходные процессы, то есть запись данных происходит сравнительно медленно. Второй важный недостаток связан с тем, что заряды ячеек имеют свойство рассеиваться в пространстве, причем весьма быстро. Если оперативную память постоянно не “подзаряжать”, утрата данных происходит через несколько сотых долей секунды. Для борьбы с этим явлением в компьютере происходит постоянная регенерация (освежение , подзарядка ) ячеек оперативной памяти. Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресурсов вычислительной системы.

Ячейки статической памяти (SRAM ) можно представить как электронные микроэлементы - триггеры , состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен ), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (так называемой кэш-памяти ), предназначенной для оптимизации работы процессора.

Каждая ячейка памяти имеет свой адрес, который выражается числом. В настоящее время в процессорах Intel Pentium и некоторых других принята 32-разрядная адресация, а это означает, что всего независимых адресов может быть 2 32 . Таким образом, в современных компьютерах возможна непосредственная адресация к полю памяти размером 2 32 = 4294967296 байт (4,3 Гбайт). Однако это отнюдь не означает, что именно столько оперативной памяти непременно должно быть в компьютере. Предельный размер поля оперативной памяти, установленной в компьютере, определяется микропроцессорным комплектом (чипсетом ) материнской платы и обычно составляет несколько сот Мбайт.

Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохранить 8 бит, то есть один байт данных. Таким образом, адрес любой ячейки памяти можно выразить четырьмя байтами.

Представление о том, сколько оперативной памяти должно быть в типовом компьютере, непрерывно меняется. В середине 80-х годов ноле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт, к середине 90-х годов он увеличился до 8 Мбайт, а затем и до 16 Мбайт. Сегодня минимальным считается размер оперативной памяти 32 Мбайт, а обычным - 64 Мбайт. Очень скоро и эта величина будет превышена в 2-4 раза даже для моделей массового потребления.


Оперативная память к компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Коли к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.

Конструктивно модули памяти имеют два исполнения - однорядные (SIMM-модули ) и двухрядные (DIММ-модули ). Многие модели материнских плат имеют разъемы как того, гак и другого типа, по комбинировать на одной плате модули разных типов нельзя.

Основными характерно гиками модулей оперативной памяти являются объем памяти и время доступа. SIMM-модули поставляются объемами 4, 8, 16, 32 Мбайт, а DIMM-модули - 16, 32, 64, 128 Мбайт и более. Время доступа показывает, сколько времени необходимо для обращения к ячейкам памяти, чем оно меньше, тем лучше. Время доступа измеряется в миллиардных долях секунды (наносекундах , нс ). Для современных DIMM-модулей оно составляет 7-10 нс.

Загрузка...