Компьютерный журнал для новичков и профессионалов

Модернизация компьютерного блока питания. Upgrade блока питания. Припаиваем провод от косы трансформатора на общий минус

Стабильность и надежность любой системы зависит ее составляющих. Если производительность компьютерной техники характеризуется процессором, оперативной памятью, материнской платой и чем больше гигагерц и ядер, гигабайт, тем лучше. Другое дело блок питания . Есть дешевые за 15 $, а есть и за 60 $. И там, и там одинаковые напряжения, та же мощность на этикетке, тогда зачем платить больше?

В конечном итоге покупается блок питания с корпусом за 25-35 $.

Себестоимость такого блока питания, без учета корпуса, но с учетом доставки из Китая, растаможки и перепродажи 2–3 посредниками, составляет от 5 до 10 $. В результате компьютер начинает зависать, перезагружаться без видимых причин. И ваш многоядерный процессор и гигабайты оперативной памяти превращаются в кучу бесполезного железа. Стабильность работы компьютерной сети также зависит от качества блоков питания компьютеров или сервера, т.е ее составляющих. Например компьютер на котором установлена база 1° C Бухгалтерии и при работе с блоком бесперебойного питания, и в момент переключения его на внутреннюю батарею, перезагружаться. В итоге все клиентские компьютеры вылетают из базы и приходится делать работу заново. Но самое страшное, если в результате выхода из строя, такой блок питания спалит еще пору модулей, например, жесткий диск. А восстановление информации с жестких дисков, сожженных блоком питания, нередко превышает стоимость самого жесткого диска в 3–5 раз. Объясняется все это очень просто – так, как качество блоков питания сложно сходу проконтролировать, особенно если они продаются внутри корпусов, то это повод для китайского производителя сэкономить за счет качества и надежности – за наш счет.

Делается все чрезвычайно просто – наклейкой новых этикеток с большей заявленной мощностью на старые блоки питания . Мощность на наклейках из года в год все больше и больше, а начинка блоков питания все та же. Этим грешат Codegen, JNC, Sunny, Ultra, и другие «no name» (Рисунок 1).

Рисунок 1 - Типичный китайский дешевый блок питания ATX. Доработка целесообразна.

Вот например взяли новый блок питания Codegen 300W нагрузили на 200 Вт. Через 4 минуты работы задымились его провода, ведущие к разъёму ATX. При этом наблюдался разбаланс выходных напряжений по источнику:

5В – 4, 82В и по +12В – 13,2В.

Чем конструктивно отличается хороший блок питания от китайских можно определить даже не вскрывая крышку. Как правило, можно заметить разницу в весе и толщине проводов. За редким исключением хороший блок питания тяжелее . Но главные отличия внутри.

На плате дорогого блока питания :

Все детали на месте;

Достаточно плотный монтаж;

Основной трансформатор больших размеров.

Плата дешевого блока питания :

Кажется полупустым (пустуют площадки для радиодеталей хотя они предусмотрены);

Перемычки вместо дросселей вторичных фильтров;

Часть фильтрующих конденсаторов отсутствует;

Сетевой фильтр отсутствует;

Трансформатор малых размеров;

Вторичные выпрямители отсутствуют, либо выполнены на дискретных диодах;

Корректор фактор мощности не предусмотрен.

Сетевой фильтр


В течении работы импульсный блок питания наводит высокочастотные пульсации как по входной (питающей) линии, так и по каждой из выходных. Так как компьютерная электроника весьма чувствительна к этим пульсациям, поэтому даже самый дешевый блок питания использует пусть упрощенные, минимально достаточные, но все же фильтры выходных напряжений. На сетевых фильтрах обычно экономят, что является причиной выброса в осветительную сеть и в эфир достаточно мощных радиочастотных помех.

На что это влияет и к чему это приводит?

Первым делом это сбои в работе компьютерных сетей и коммуникаций. Появление дополнительных шумов и помех на радиоприемниках и телевизорах. Это может вызывать сбои в работе другой высокоточной измерительной аппаратуры, находящейся рядом, или включенной в ту же фазу сети.

С точки зрения надежности н аилучший вариант – приобретение изначально качественного блока питания . Или хорошие результаты можно получить доработкой уже имеющихся дешевых блоков питания. В основном печатные платы спроектировали по критерию максимальной универсальности, т. е. в зависимости от количества установленных комплектующих можно было бы варьировать качеством и, соответственно, ценой. Другими словами, если установить те детали, на которых производитель сэкономил, и еще кое – что поменяем – получим неплохой блок средней ценовой категории. Конечно, это не сравнить с дорогими экземплярами, где топология печатных плат и схемотехника изначально рассчитывалась для получения хорошего качества, как и все детали. Но для среднестатистического домашнего компьютера вполне приемлемый вариант.

Выбор блока питания для доработки


Критерий отбора – величина самого большого ферритового трансформатора. Если он имеет бирку, на которой вначале идут цифры 33 или больше и имеет размеры 3×3×3 см или больше. В противном случае приемлемого баланса напряжений +5В и +12В при изменении нагрузки добиться не удастся, и кроме того трансформатор будет сильно греется, что значительно снизит надежность.


Высоковольтная часть блока питания


Заменяем 2 электролитических конденсатора по сетевому напряжению на максимально возможные, способные поместиться на посадочные места (Рисунок 2). Обычно в дешевых блоках их номиналы 200 µF х 200 V, 220 µF x 200 V или в лучшем случае 330 µF x 200 V. Меняем на 470 µF x 200 V или лучше на 680 µF x 200 V. Эти электролиты, как и любые другие в компьютерных блоках питания, ставить только из серии 105 градусов!


Низковольтная часть блока питания.

Установка конденсаторов и дросселей вторичных цепей

Дросселя можно взять из разборки на радиорынке или намотать на соответствующем куске феррита или кольце 10–15 витков провода в эмалевой изоляции диаметром 1,0–2,0 мм (чем больше, тем лучше). Конденсаторы подойдут на 16 V, Low ESR типа, 105 градусов серия (Рисунок 3). Емкость следует выбирать максимальной, чтобы конденсатор смог поместиться на штатное место (обычно 2200 µF).


Меняем выпрямительные диоды и модули вторичных выпрямителей на более мощные. В первую очередь это касается выпрямительных модулей на 12 V. Это обьясняется тем, что в последние 5–7 лет энергопотребление компьютеров, в частности материнских плат с процессором, возрастало в большей степени по шине + 12 V.


    Рисунок 4 - Выпрямительные модули для вторичных источников: 1 - наиболее предпочтительные модули. Устанавливаются в дорогих блоках питания; 2 - дешевые и менее надежные; 3 - 2 дискретных диода - самый экономный и ненадежный вариант, подлежащий замене.

Устанавливаем дроссель сетевого фильтра (место для его установки см. рисунок 2).

Рис. 5 Блок питания ATX с доработанными радиаторами охлаждения.

Радиатор

Если радиаторы блока питания выполнены в виде пластин с прорезанными лепестками, разгибаем эти лепестки в разные стороны, чтобы максимально повысить эффективность радиаторов.

Таким образом, вложив в модернизацию дешевого блока питания ATX 6-10$, можно получить неплохой БП для домашнего компьютера.

Блоки питания боятся нагрева, который приводит к выходу из строя полупроводников и электролитических конденсаторов. Усугубляется это тем, что воздух проходит через компьютерный блок питания уже предварительно нагретый элементами системного блока (процессором, северным мостом и видеокартой). Рекомендую вовремя чистить блок питания от пыли изнутри и за одно проверять, нет ли вздутых электролитов внутри (Рисунок 6).

Рисунок 6 - Вышедшие из строя электролитические конденсаторы - вздувшиеся верхушки корпусов.

В случае обнаружения вздутых электролитов , меняем на новые.

Здравствуйте, сейчас я расскажу о переделке ATX блока питания модели codegen 300w 200xa в лабораторный блок питания с регулировкой напряжения от 0 до 24 Вольт, и ограничением тока от 0,1 А до 5 Ампер. Выложу схему, которая у меня получилась, может кто чего улучшит или добавит. Выглядит сама коробка вот так, хотя наклейка, может быть синей или другого цвета.

Причем платы моделей 200xa и 300x почти одинаковы. Под самой платой есть надпись CG-13C, может быть CG-13A. Возможно, есть другие модели похожие на эту, но с другими надписями.

Выпаивание ненужных деталей

Изначально схема выглядела вот так:

Нужно убрать всё лишнее, провода atx разъёма, отпаять и смотать ненужные обмотки на групповом дросселе стабилизации. Под дросселем на плате, где написано +12 вольт ту обмотку и оставляем, остальные сматываем. Отпаять косу от платы (основного силового трансформатора), не в коем случае не откусывайте её. Снять радиатор вместе с диодами Шоттки, а после того как уберём все лишнее, будет выглядеть вот так:

Конечная схема после переделки, будет выглядеть вот так:

В общем выпаиваем все провода, детали.

Делаем шунт

Делаем шунт, с которого будем снимать напряжение. Смысл шунта в том, что падение напряжения на нём, говорит ШИМ-у о том, как нагружен по току - выход БП. Например сопротивление шунта у нас получилось 0,05 (Ом), если измерить напряжение на шунте в момент прохождения 10 А то напряжение на нём будет:

U=I*R = 10*0,05 = 0,5 (Вольт)

Про манганиновый шунт писать не буду, поскольку его не покупал и у меня его нет, использовал две дорожки на самой плате, замыкаем дорожки на плате как на фото, для получения шунта. Понятное дело, что лучше использовать манганиновый, но и так работает более чем нормально.

Ставим дроссель L2 (если есть) после шунта

Вообще их рассчитывать надо, но если что - на форуме где-то проскакивала программа по расчету дросселей.

Подаём общий минус на ШИМ

Можно не подавать, если он уже звонится на 7 ноге ШИМ. Просто на некоторых платах на 7 выводе не было общего минуса после выпайки деталей (почему - не знаю, мог ошибаться, что не было:)

Припаиваем к 16 выводу ШИМ провод

Припаиваем к 16 выводу ШИМ - провод, и данный провод подаём на 1 и 5 ножку LM358

Между 1 ножкой ШИМ и выходом плюс, припаиваем резистор

Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.

Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.

На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.


Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.

Устанавливаем на выход БП конденсаторы и нагрузочный резистор

Нагрузочный резистор можно поставить от 470 до 600 Ом 2 Ватта. Конденсаторы по 500 мкф на напряжение 35 вольт. Конденсаторов с требуемым напряжением у меня не было, поставил по 2 последовательно по 16 вольт 1000 мкф. Припаиваем конденсаторы между 15-3 и 2-3 ногами ШИМ.

Припаиваем диодную сборку

Ставим диодную сборку ту, что и стояла 16С20C или 12C20C, данная диодная сборка рассчитана на 16 ампер (12 ампер соответственно), и 200 вольт обратного пикового напряжения. Диодная сборка 20C40 нам не подойдет - не думайте её ставить - она сгорит (проверено:)).

Если у вас есть какие либо другие диодные сборки смотрите чтоб обратное пиковое напряжение было минимум 100 В ну и на ток, какой по больше. Обычные диоды не подойдут - они сгорят, это ультро-быстрые диоды, как раз для импульсного блока питания.

Ставим перемычку для питания ШИМ

Поскольку мы убрали кусок схемы который отвечал за подачу питания на ШИМ PSON, нам надо запитать ШИМ от дежурного блока питания 18 В. Собственно, устанавливаем перемычку вместо транзистора Q6.

Припаиваем выход блока питания +

Затем разрезаем общий минус который идёт на корпус. Делаем так, чтоб общий минус не касался корпуса, иначе закоротив плюс, с корпусом БП, всё сгорит.

Припаиваем провода, общий минус и +5 Вольт, выход дежурки БП

Данное напряжение будем использовать для питания вольт-амперметра.

Припаиваем провода, общий минус и +18 вольт к вентилятору

Данный провод через резистор 58 Ом будем использовать для питания вентилятора. Причём вентилятор нужно развернуть так, чтоб он дул на радиатор.

Припаиваем провод от косы трансформатора на общий минус

Припаиваем 2 провода от шунта для ОУ LM358

Припаиваем провода, а также резисторы к ним. Данные провода пойдут на ОУ LM357 через резисторы 47 Ом.

Припаиваем провод к 4 ножке ШИМ

При положительном +5 Вольт напряжении на данном входе ШИМ, идёт ограничение предела регулирования на выходах С1 и С2, в данном случае с увеличением на входе DT идёт увеличение коэффициента заполнения на С1 и С2 (нужно смотреть как транзисторы на выходе подключены). Одним словом - останов выхода БП. Данный 4-й вход ШИМ (подадим туда +5 В) будем использовать для остановки выхода БП в случае КЗ (выше 4,5 А) на выходе.

Собираем схему усиления тока и защиты от КЗ

Внимание: это не полная версия - подробности, в том числе фотографии процесса переделки, смотрите на форуме.

Обсудить статью ЛАБОРАТОРНЫЙ БП С ЗАЩИТОЙ ИЗ ОБЫЧНОГО КОМПЬЮТЕРНОГО

Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.

Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.


Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.

Распиновка выходов блока питания компьютера


Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.

Переделка началась

Что нам понадобиться?
  • - Клеммы винтовые.
  • - Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
  • - Трубка термоусадочная.
  • - Пара светодиодов с гасящими резисторами на 330 Ом.
  • - Переключатели. Один для сети, второй для управления

Схема доработки блока питания компьютера


Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.

Начнем

Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.


Вставляем клеммы и затягиваем.


Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.


Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.


Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.


Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.


Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.


Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.

Смотрите видео изготовления лабораторного блока своими руками

Данная статья (первый вариант) была написана для моего собственного проекта, который в настоящее время находится в умирающем положении и будет перепрофилирован. Так как я считаю, что статья будет полезна многим людям (я сужу по многочисленным письмам, в том числе и от читателей Вашего ресурса), предлагаю Вам разместить вторую редакцию данного творения.

Надеюсь, это будет интересно Вам и Вашим читателям.

С уважением, Саша Черный.

реклама

Хорошая и стабильная работа компьютера зависит от многих факторов. Не в последнюю, а может и в первую очередь, это зависит от правильного и надежного блока питания. Обычный пользователь прежде всего озабочен выбором процессора, материнской платы, памяти и других комплектующих для своего компьютера. На блок питания внимание обращается мало (если вообще обращается). В результате основным критерием выбора БП является его стоимость и указанная на этикетке заявленная мощность. Действительно, когда на этикетке написано 300 вт – это конечно хорошо, и при этом цена корпуса с БП составляет 18 – 20$ - вообще замечательно... Но не все так просто.

И год и два и три назад цена на корпуса с БП не менялась и составляла те же 20$. А что же менялось? Правильно – заявленная мощность. Сначала 200вт потом 235 – 250 – 300 вт. В следующем году будет 350 – 400 вт... Произошла революция в БП-строении? Ничего подобного. Вам продают одни и те же БП только с разными этикетками. Причем, зачастую 5 летней давности БП с заявленной мощностью 200вт, выдаёт больше чем свежий 300 ваттник. Что поделаешь - удешевление и экономия. Если нам корпус с БП достается за 20$, то, сколько его реальная себестоимость с учетом транспортировки из Китая и 2-3 посредниками при продаже? Наверное, 5-10$. Вы представляете себе, какие туда детали засунул дядюшка Ляо за 5$? И вы ЭТИМ хотите нормально запитать компьютер стоимостью от 500$? Что же делать? Покупать дорогой блок питания за 60 – 80$ это, конечно, хороший выход, когда есть деньги. Но не самый лучший (деньги есть не у всех и не в достаточном количестве). Для тех, у кого нет лишних денег, а есть прямые руки, светлая голова и паяльник – предлагаю несложную доработку китайских БП с целью приведения их в чувство.

Если посмотреть на схемотехнику фирменных и китайских (no name) БП, то можно увидеть, что они очень похожи. Используется одна и та же стандартная схема включения на базе микросхемы ШИМ КА7500 или аналогов на TL494. А в чем же между блоками питания разница? Разница в применяемых деталях, их качестве и количестве. Рассмотрим типичный фирменный блок питания.

Многие сталкивались с проблемой малой выходной мощности БП компьютера. Чаще всего это выражается в самопроизвольных перезагрузках, ярко выраженной зависимостью от напряжения сети и т.п. Однако, как известно, современные импульсные БП очень надежны. Так почему же происходят все эти досадные мелочи? Давайте заглянем в самый простой (дешевый) и, как следствие, самый распространенный БП.

Фото 1. «Внутренности» обычного БП

На фото №1 видно, что основное пространство занято электролитическими конденсаторами всех емкостей и номиналов, трансформаторами и двумя радиаторами для диодных сборок и стабилизаторов. Итак, чаще всего все проблемы происходят из-за того, что БП перегревается. Несмотря на то, что вентилятор в поте лица вытягивает нагретый воздух из корпуса ПК через отверстия в блоке питания. И тем самым поднимает и без того не маленькую температуру внутри БП, достигающую порой 60-65°С. 90% тепла выделяют радиаторы, а остальные 10% приходятся на катушки индуктивности, резисторы и конденсаторы.

Первое на что следует обратить внимание, это на фильтрующие конденсаторы, установленные в выпрямителе (самые большие), их стандартная емкость 150-220мкф, а напряжение около 200V. С такими параметрами, столь свойственными китайскому минимализму, эти конденсаторы у нас долго не живут, так как все они установлены буквально впритык. Использование таких конденсаторов также сказывается на выходной мощности БП. Их нужно заменить на аналогичные электролитические конденсаторы, но с более высокими параметрами по емкости и напряжению (например 470мкФ х 250V). Выбирайте по возможности, но все же чем больше, тем лучше. Конденсаторы (фото №2 ) на выходе питающих напряжений в ПК (1000\2000х25\35V) тоже лучше сменить. Меньше будет пульсаций и, как следствие, компьютер будет работать более надежно. Далее переходим к радиаторам, на которых установлены стабилизаторы и диодные сборки. Сами по себе радиаторы мало чем могут помочь рассеять ту мощность которую потребляет ПК. Ключи греются вследствие этого сильнее и сильнее.


Фото 2.

На фото №3 видны две самых распространенные формы радиаторов. Как могут эти пластиночки рассеивать заявленные в паспорте 250-300Вт, остается только удивляться. Причем ключи монтируются через изоляционную ленту без какой-либо теплопроводящей пасты.


Фото 3. Формы радиаторов

Основную роль в моей доработке играет радиатор от процессорного кулера, пылившийся на полке в результате перехода на водяное охлаждение. Радиатор крепится с внешней стороны на месте вентилятора (фото №4 ). В радиаторе просверливаются отверстия для крепления по четырем углам. Старые отверстия для вентилятора приходятся как нельзя кстати. Задача такая: выпаять, все диодные сборки и стабилизаторы и перенести их на один радиатор обдуваемый снаружи кулером.


Фото 4.

Затем следует подготовить «подошву радиатора» т.е. то место, где он ранее соприкасался с процессором. Т.к. именно туда мы будем крепить все силовые элементы БП.

Все шесть деталей как раз умещаются на радиаторе (фото №5 ). Их следует крепить через изоляционный материал, а место крепления необходимо промазать теплопроводной пастой. Особое внимание нужно уделить изоляции деталей друг от друга и от радиатора (за исключением деталей с пластмассовым корпусом). После того как деталь выпаяна с платы, ее ножки наращиваются любыми медными проводниками (фото №6 ). Длина должно быть достаточной для монтажа ее на радиаторе. И не забудьте пометить провода, дабы потом не ломать голову о назначении того или иного выводаJ. На фото видно как все это выглядит в жизни.


Фото 5.

Родные радиаторы выпаиваются, а следом выпаиваются и элементы стабилизации (на фото №6 видны провода, которые тянутся к новому «месту жительства» деталей).


Фото 6.

Провода желательно стянуть изолентой или чем-то подобным, чтобы не создавать беспорядка.


Фото 7.


Фото 8.

Вид сверху показан на фото №9 . Да, конечно, конструкция несколько увеличивает габариты компьютера, но это плата за стабильность. Компьютер стал нечувствителен к скачкам напряжения в квартире. Пропали самопроизвольные перезагрузки.


Фото 9.

В итоге при пассивном охлаждении температура радиатора не поднималась выше 55°C, а при использовании кулера составила 27-30°C под нагрузкой.

Будьте внимательны! В боке питания присутствует напряжение, опасное для жизни, поэтому знание техники безопасности и основ радиоэлектроники обязательны!

Загрузка...